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Abstract— When registering 3-D point clouds it is expected
that some points in one cloud do not have corresponding
points in the other cloud. These non-correspondences are likely
to occur near one another, as surface regions visible from
one sensor pose are obscured or out of frame for another.
In this work, a hidden Markov random field model is used
to capture this prior within the framework of the iterative
closest point algorithm. The EM algorithm is used to estimate
the distribution parameters and learn the hidden component
memberships. Experiments are presented demonstrating that
this method outperforms several other outlier rejection methods
when the point clouds have low or moderate overlap.

I. INTRODUCTION

Depth sensing is an increasingly ubiquitous technique for
robotics, 3-D modeling and mapping applications. Struc-
tured light sensors, lidar, and stereo matching produce point
clouds, or 3-D points on surfaces. Algorithmic registration
of point clouds is needed to use the resulting data, often
without the aid of other measurements. Iterative closest point
(ICP) [1] is commonly used for this purpose, although this
time-tested approach has its drawbacks, including failure
when registering clouds with low overlap [2], [3]. However,
many applications of 3-D registration would be more efficient
with low overlap clouds, such as combining partial scans
into a complete 3-D model. To address this gap, we present
a probabilistic model using a hidden Markov random field
(HMRF), shown in Fig. 1, for inferring via the EM algorithm
which points lie in the overlap. A successful alignment of
clouds with low overlap is shown in Fig. 2.

ICP attempts to recover the optimal transformation to align
two point clouds. The algorithm recovers the transformation
that moves the “free” point cloud onto the “fixed” point cloud
by iteratively:

1) finding the closest point in the fixed cloud to each point
in the free cloud;

2) discarding some of these matches as outliers; and
3) computing and applying the rigid transform that op-

timally aligns the remaining points (the inliers), min-
imizing some measure of the nearest point distances
found in step 1;

until convergence. The present work focuses on step 2 of the
above sequence.
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Fig. 1. Graphical model for nearest fixed point distance, shown for a 4×4
grid of pixels in the free depth map. At pixel i, the Zi ∈ {±1} value is
the unobserved inlier/outlier state, and Yi ∈ R≥0 is the observed distance
to the closest fixed point.

Which error measure is minimized in step 3 has been con-
sidered extensively [4], and is explored further in Section II.
There are closed-form solutions [5] that minimize the point-
to-point distance, including using the singular value decom-
position [6] and the dual number quaternion method [7].
The present work minimizes the sum of squared point-to-
point distances, for simplicity, although it is fundamentally
independent of choice of error metric.

A crucial step in ICP is the rejection of outliers (step 2),
generally resulting from non-overlapping volumes of space
between two measurements. The original ICP formulation [1]
does not discard any points and simply incurs error for
each outlier. A proliferation of strategies have been proposed
for discarding outliers [3], [8], [9], [10], [11], [12]. These
methods threshold the residual distance from free points to
the nearest point in the fixed cloud, but do not consider the
spatial relations amongst points in the free cloud, and what
information might be gained by considering whether a point’s
neighbors are inliers or outliers. In the present work we pro-
pose an alternative method where the distribution of residual
distances is modeled as a mixture of two distributions: a
Gaussian for inliers and a logistic distribution for outliers.
Using a technique from image segmentation, a point’s inlier
or outlier state is modeled as being influenced by the state
of its neighbors through a hidden Markov random field—
an expectation we refer to as the “neighbor prior.” The EM
algorithm, with the use of a mean field approximation, allows
for inference of the hidden state.

By employing the neighbor prior, the HMRF model can
infer which points are outliers in high- and low-overlap
cloud pairs. Although exact inference for an MRF model is
intractable in applications of reasonable size, the mean field
approximation provides sufficient accuracy at a reasonable
computational expense. Further justification and development
of the neighbor prior is discussed at length in Sections II



Fig. 2. A successful registration with only 36% overlap. The blue points are
the fixed cloud, and the green and red points together are the free cloud,
which has been registered. The green points are inliers and the red are
outliers, as inferred by the HMRF method.

and III. Sections IV and V present experiments and results
on two challenging benchmark dense 3D datasets, showing
this method outperforms two state-of-the-art methods, par-
ticularly on point clouds with low overlap. To the authors’
knowledge, this is the first example of an HMRF model being
employed for 3-D registration, and these promising results
show that the model is a viable and attractive alternative to
other more complex probabilistic scan matching techniques.
In particular, the HMRF’s relative simplicity and ease of
deployment make it scalable and adaptable to different
environments where little or no prior knowledge or training
data are available.

II. RELATED WORK

Several attempts have been made to improve registra-
tion performance in the low-overlap regime. The hybrid
genetic/hill-climbing algorithm of Silva, et al. [13] shows
success with overlaps down to 55% but at the great compu-
tational expense of a stochastic global search. Good low-
overlap performance is claimed in [14], which defines a
“direction angle” on points and then aligns clouds in rotation
using a histogram of these, and in translation using correla-
tions of 2-D projections; although not described as such, a
Manhattan world assumption is made. Rotational alignment
is recovered using extended Gaussian images in [2], and
refined with ICP, showing success with overlap as low
as 45%. HMRF ICP is simpler than these methods, and
generally performs well at overlaps that are still lower.

Robust statistics or improved error metrics can make ICP
more robust to outliers. The point-to-plane [15] metric, which
measures the distance projected onto the surface normal of
the fixed point, is frequently used and more robust in the case
of limited overlap [16]. Sparse norms are used within ICP
in [17]. These additions are mostly orthogonal to the work

presented, and so could be implemented within HMRF ICP,
possibly resulting in further performance improvements.

Improvements to ICP have been achieved through better
rejection of outlier correspondences—a thread of research
that the current work fits into. Several methods work by
thresholding the residual distances, and differ simply in how
the threshold is determined: fixed distance [8], residual per-
centile [3], standard deviations from the mean residual [9],
or median absolute deviations from the median residual [10].
These methods inherently assume a large overlap fraction,
so are brittle to overlap variations. Zhang [11] presents
an adaptive threshold tuned with a distance parameter that
does not have direct physical significance. Fractional ICP
dynamically adapts the fraction of point correspondences
to be used [18], although this method explicitly assumes a
large fraction of overlap, with a penalty for smaller overlap
fractions. Finally, there are a few outlier-rejection methods
that cannot be summarized as simple thresholds. Enqvist,
et al. [12] leverage the fact that distances between corre-
sponding points within a cloud will be invariant under rigid
motion and find the largest set of consistent correspondences
to identify inliers. In [19], points are classified as inliers or
one of three classes of outliers: occluded, unpaired (outside
the frame), or outliers (sensor noise). The current work is
more closely related to the simple threshold methods, but
uses a probabilistic model that better captures the expected
residual distribution.

In contrast to the current method, EM-ICP [20], [21]
employs EM to recover point correspondences. The corre-
spondence is the hidden variable and the E-step computes
assignment probabilities, and the implied rigid transforma-
tion is recovered in the M-step. This approach assumes that
every point in the free cloud corresponds to some point in
the fixed cloud, although it may be straightforward to include
an “unassigned” value to the hidden variable states.

Since ICP requires an informed initialization, significant
work has been devoted to achieving global registration or
finding an approximate alignment from any initial state,
which is then refined with ICP. In Super 4PCS [22], [23],
an initial alignment is found by matching sets of 4 coplanar
points, using ratios invariant to rigid transformation; good
performance with low overlap is claimed, and is used as
a basis for comparison in this work. Fast global registration
between two or more point clouds is achieved in [24] by find-
ing correspondences only once based on point features, then
using robust estimators to mute the impact of spurious cor-
respondences. Branch-and-bound algorithms can guarantee
global optimality, and several variations have been applied to
the registration problem to search over transformations [25]
or over point or feature correspondences [26]. With the
exception of Super 4PCS, low-overlap performance is not
addressed in these works, and many require final refinement,
thereby offering an opportunity to apply HMRF ICP.

Finally, Ramos, et al. [27] and Sun, et al. [28] use
conditional random fields to discriminatively match 2-D lidar
scans in an ICP setting with impressive and reliable results.
Although extending the method to 3-D registration is theoret-



ically straightforward, the computational cost would increase
significantly. These methods use an AdaBoost classifier to
combine several derived features, which requires training the
classifier with ground truth alignments. The classifier may
not generalize well to new observations that are not drawn
from the same distribution as the training data. In contrast,
the generative neighbor prior leveraged in this work is a
direct consequence of sensor geometry, and thus does not
require training data.

Few existing methods specifically address the problem of
aligning clouds with low overlap—more often, high overlap
is assumed. By using an appropriate probabilistic model that
captures the neighbor prior, this assumption need not be
made, and the resulting method works equally well with high
and low overlap.

III. PROBABILISTIC NEIGHBOR PRIOR MODEL

Let Bi ∈ R4 be a point in the free cloud in homogeneous
coordinates. In the first step of ICP, we find the closest point
to Bi in the fixed cloud, which we will denote Cj ∈ R4.
The distance between them, yi = ‖Bi−Ci‖, is the observed
residual. Y will denote all Yi random variables, with specific
instantiations represented as y and yi, respectively.

Many sources of depth data generate data with a 2-D
lattice structure—the pixel grid—in which each pixel has
four nearest neighbors. We exploit these neighbor relations
to model the distribution of the closest point distances Y .
Neighbor relations can also be defined on unstructured point
clouds, as discussed below, although a grid topology is more
intuitive.

Given observed distances y, we wish to decide which
points are inliers. Our prior beliefs are: (i) inliers will
generally lie closer to their respective closest point than
outliers; and (ii) neighbors of inliers are likely inliers, and
neighbors of outliers are likely outliers—the neighbor prior.
To capture these priors, we model the distribution of Y as
a mixture of two distributions, one for inliers and one for
outliers, where a point’s mixture membership is dependent
on its nearest neighbors. That is, we capture the second prior
using a hidden Markov random field on the inlier/outlier state
of a point.

A. Probabilistic model

The graphical model for data with a grid topology is shown
in Fig. 1. The distribution of Y conditionally depends on the
hidden field Z, which is Gibbs distributed with a parameter
β that controls the strength of the neighbor influence. The
Gibbs distribution is calculated based on the energy of a
given configuration, PG(Z) = W−1 exp(−H(Z)), where
W is a normalization term called the “partition function”,
W =

∑
z exp(−H(z)).

We use the energy function H(z) = −β
∑
i′∼i wi,i′zizi′

where wi,i′ is the edge weight, and β ≥ 0 is a parameter
controlling the interaction strength. If all neighbor relations
are considered equally, such as in a grid topology with no
privileged edges, the weights are all 1. More generally, they
can capture the strength of a particular neighbor interaction.

Function ICP(Initial transform Tinit, clouds B and C,
field parameter β, thresholds):

KDtree = BuildKdTree(C)
T = Tinit
B = T ×B
I,y = KDtree.NearestNeighbors(B)
Initialize z̃ to 1 except for highest 10% of y, which

are initialized to -1.
do

do
θ = M-step(y, z̃)
z̃ = E-step(y, z̃, θ, β)

while some z̃ value changed sign
Tstep = localize(B,C, z̃)
T = Tstep × T
B = Tstep ×B
I,y = KDtree.NearestNeighbors(B)

while Tstep sufficiently large
return T

Function E-step(y, z̃, θ, β):
Calculate update, z̃ ← E[Z|y, z̃, θ]
return z̃

Function M-step(y, z̃):
Calculate MLE of θ from complete data log

likelihood, assuming E[Z] = z̃
return θ

Algorithm 1: The full HMRF ICP algorithm. Pyramiding
has been omitted for clarity, as well as iteration limits on
loops.

Note that calculation of W , and therefore exact calculation
of PG(z), requires a sum over all possible configurations, so
is exponential in the number of nodes. For a nontrivial field
this is intractable. We avoid this issue with the mean field
approximation [29], which assumes a fixed configuration z̃ =
E[PG(Z|β)] and approximates the Gibbs distribution with
independent components conditioned on z̃,

PG(Z|β) ≈
∏
i

Pmf(Zi|β, z̃). (1)

As the components are independent, it is no longer necessary
to exhaust over z configurations. The components also
depend only on local information:

Pmf(zi|β, z̃) =
exp (β

∑
i′∼i wi,i′ziz̃i′)

exp (β
∑
i′∼i wi,i′(+1)z̃i′) + exp (β

∑
i′∼i wi,i′(−1)z̃i′)

.

(2)
We assume that inliers are normally distributed and out-

liers are logistically distributed (as discussed further below).
The approximate complete data likelihood can be written,

fmf(Y ,Z|β, θ, z̃) =
∏
i

Pmf(zi|β, z̃)

(N(yi|µ+1, σ+1))
(1+zi)/2(L(yi|µ−1, s−1))

(1−zi)/2, (3)

with parameters β, µ−1, s−1, µ+1, σ+1. We will use θ to
represent all Gaussian and logistic parameters, that is, θ =
{µ−1, s−1, µ+1, σ+1}.



B. Applying the EM algorithm

The maximum likelihood model parameters and hidden
state are estimated using the EM algorithm, similarly to
the image segmentation model presented in [30], [31], [32].
In the E-step, the current estimate of the normal and lo-
gistic parameters, along with the current mean field and
the observed residuals, are used to find the expected value
of the hidden field. Then, in the M-step, the estimates for
the normal and logistic parameters are updated using the
maximum likelihood estimates from the observed data and
the expected value of the hidden field. The full HMRF ICP
algorithm is shown in Algorithm 1.

The complete data log likelihood can be bounded be-
low by taking the expectation with respect to the hidden
Z values, due to Jensen’s inequality. Because of linearity
of expectation, and since zi appears linearly in the com-
plete data log likelihood, this amounts to replacing zi with
E[zi|yi, z̃, θ, β] = 2P (zi = 1|yi, z̃, θ, β) − 1 throughout
Equation 3. The EM algorithm iteratively calculates these
probabilities in the E-step, and then chooses parameters to
maximize the resulting expected likelihood in the M-step.

1) The E-step: The mean field approximation allows for
a closed-form E-step, where we calculate,

P (zi = +1|yi, z̃, θ, β) ∝

exp

(
β
∑
i′∼i

wi,i′ z̃i′

)
1√

2πσ2
+1

exp

(
(yi − µ+1)

2

2σ2
+1

)
(4)

P (zi = −1|yi, z̃, θ, β) ∝

exp

(
−β
∑
i′∼i

wi,i′ z̃i′

)
exp

(
−yi−µ−1

s

)
s
(
1 + exp

(
−yi−µ−1

s

))2
(5)

The necessary normalization factor is the same for the two
calculations, so is simply their sum.

2) The M-step: Now, the expected hidden values can be
used to update the mean field and problem parameters in
the M-step using maximum likelihood estimates. Updating
the mean field is simply adopting the expected zi values
calculated in the E-step. The MLEs of the normal and logistic
distribution parameters are calculated in the normal way, but
the data are weighted by the probabilities that they came
from the given distribution. For the inliers,

n+1 =
∑
i

(
1 + zi

2

)
(6)

µ+1 =
1

n+1

∑
i

1 + zi
2

yi (7)

σ+1 =

√
1

n+1

∑
i

1 + zi
2

y2i − µ2
+1. (8)

For the outliers,

n−1 =
∑
i

(
1− zi

2

)
(9)

µ−1 =
1

n−1

∑
i

1− zi
2

yi (10)

s−1 =

√
3

π

√
1

n−1

∑
i

1− zi
2

y2i − µ2
−1. (11)

C. Fitting the outlier distribution

It was observed that some outlier distributions had multiple
modes or heavy tails, as distant regions were observed. To
better model this distribution, outlier residuals for 100 pairs
of frames from each of the three datasets described in Sec-
tion IV were analyzed. A Kolmogorov-Smirnov statistic was
used to compare the empirical CDF with the normal distribu-
tion and six heavy-tail distributions: the gamma, logistic, log-
logistic, log-normal, Rayleigh, and Student’s t distributions.
No distribution outperforms all others in all cases, but the
logistic distribution shows good average performance and is
simple to estimate within the EM framework. Nevertheless,
the worst cloud pairs still fail to align—in particular, those
with multimodal outlier residuals. A mixture model would
likely be more effective in these cases, but would also be
significantly more computationally expensive.

D. Accelerating EM convergence

The EM algorithm is accelerated via a pyramid method:
we downsample the Z and Y fields, allow EM to converge
for this smaller model, then upsample the converged Z to
initialize the larger model. For grid topologies, each pyramid
level has a quarter the number of pixel sites as the level
below it (half in each dimension). For unstructured clouds,
discussed below, each pyramid level has half the number
of points as the level below it. Although pyramiding is
a common technique in computer vision, such as in the
pyramidal Lucas Kanade optical flow algorithm [33], this
is the first application to initializing a Markov random field.

E. Unstructured clouds

The pixel grid provides an intuitive structure on which
to define the Markov random field, but the method can
be extended to any point cloud by defining neighbor rela-
tions independent of underlying topology. We measure the
“neighborliness” of two points by their distance, and apply
a Gaussian kernel, exp

(
−‖Bi −Bj‖/2σ2

)
, to generate an

appropriate edge weight. The σ parameter is set to half the
average nearest-neighbor distance.

Calculating weights for every pair of points would require
N2 work, but only the nearest neighbors to a given point
will have non-negligible values, by design. Thus, neighbor
weights are only calculated for the k-nearest neighbors of
each point, with 6 ≤ k ≤ 10 giving satisfactory experimental
results. Applying the pyramid acceleration to this neighbor-
hood structure, however, is not straightforward. The obvious
downsampling and upsampling methods available with a grid
cannot be used for an arbitrary graph. Instead, we sample half



Fig. 3. Successful registration of two lidar spins, taken from the KITTI
odometry dataset [34]. On the left, the initial registration from the RTK GPS
poses. On the right, the registration refined by HMRF ICP. No information
about the data topology was used.

the points at random to build a new layer on the pyramid.
The new layer needs neighbor weights, as well, which we
calculate by squaring the neighbor matrix for the lower level,
with diagonal elements set to 0. This captures the two-hop
weight between points in the lower neighbor matrix. Finally,
once EM converges in a pyramid layer, the resulting Z field
is upsampled using the lower-level neighborhood matrix to
initialize the points that were not sampled in the higher-level
neighborhood.

Figure 3 shows the successful alignment of two lidar
spins, taken from the KITTI odometry dataset [34]. The
ground truth poses in this dataset are from RTK GPS and
IMU measurements, which have high accuracy over long
sequences, but are not sufficiently accurate for the purpose
of our experiments, described below.

IV. EXPERIMENTS

The HMRF method is compared with Go-ICP [35] and
Super 4PCS [23], as well as ICP with five other outlier
rejection methods: (1) no outlier rejection, (2) keeping 90%
of the points with smallest residuals, (3) keeping points
whose residuals were less than 2.5 standard deviations above
the mean, (4) keeping points whose residuals were less
than 5.2 median absolute deviations above the median (the
so-called “X84” criterion), and (5) the dynamic threshold
from Zhang [11]. All of the ICP implementations (including
HMRF ICP) use the point-to-point sum of squares distance
metric.

The method is applied to several datasets: the shark
sequence is a tabletop scene, taken by an Asus Xtion Pro;
the remaining experiments were run on ten publicly available
RGB-D SLAM datasets [36] from the TUM Computer Vision
Group (specifically, those datasets in the “Handheld SLAM”
category). Ground truth poses are known for both sequences.
The sensor in the desk and room sequences is tracked
using an external motion tracking system. The poses in the
shark sequence are those estimated in the tracking stage of

InfiniTAM[37] during the reconstruction of the scene. The
camera calibrations are known and used to appropriately
unproject the depth maps and generate point clouds. In the
shark sequence, 100 pairs of frames were selected at random,
but stratified to include a variety of overlap ratios. Similarly,
90 frames were selected from the TUM datasets: one each
from each dataset and overlap decile, except 0–10%. The
overlap is estimated using the ground truth poses and the
relative distance to each free point’s nearest neighbor in its
own cloud versus in the fixed cloud. The threshold for this
comparison was chosen to err on the side of overestimating
the overlap ratio.

The frame pairs were aligned using ground truth poses,
and translated so that the coordinate origin was at the
centroid of the fixed frame. Then, the free cloud alignment
was perturbed by rotating 18 degrees about a random axis
through the origin. The same initialization was used for all
methods for a given frame pair (including the global meth-
ods, Go-ICP and Super 4PCS). HMRF ICP was configured
with 4 pyramid levels. Before the first ICP transformation
was calculated, EM was limited to 150 iterations at each
pyramid level, although this limit was rarely met; after
applying the first transformation, EM was limited to 5 steps
at each pyramid level. All experiments were executed in
MATLAB on a workstation with 8 Intel R© Xeon R© E5620
CPUs at 2.40GHz, and with 48 GB RAM. The Go-ICP
and Super 4PCS implementations are available from the
authors [35], [23]. Both are written in C++ and are single-
threaded. Parameters for these methods were chosen based
on the provided demos, and their execution time was limited
to 120 seconds. The Super 4PCS algorithm requires a prior
estimate of the cloud overlap, which was provided from the
overlap estimate described above. All code can be found at
https://github.com/JStech/ICP.

V. RESULTS

The results were noisy and no method was consistently
best. Complete results are available in the supplementary ma-
terials. HMRF ICP performed best among the ICP variants,
so we compare it to Go-ICP and Super 4PCS here.

Fig. 4 shows summary plots of the rotation error, trans-
lation error, and elapsed time for each method. At high
overlaps, Go-ICP often recovered the transformation most
accurately. However, its performance deteriorated quickly as
the overlap decreased: only 7 Go-ICP tests with overlaps
below 70% ran to completion within the time limit and
returned transformations. Super 4PCS performed well at
moderate overlaps, and often recovered the most accurate
transformation in rotation and translation for overlaps around
50%. At very low overlaps (below 20%), no method per-
formed reliably. Super 4PCS was very fast at moderate-
to-high overlaps, even running single-threaded. However, it
had a higher variance than HMRF ICP, in both accuracy
and elapsed time. Note that the elapsed time of HMRF
ICP cannot be compared directly with that of Go-ICP and
Super 4PCS, as HMRF ICP was implemented entirely in
MATLAB (and was thus able to take advantage of built-in
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Fig. 4. Error and elapsed time plots for shark scene (top) and all TUM scenes (bottom). For each method, the data are aggregated by overlap decile, and
the minimum, first quartile, median, third quartile, and maximum are shown. A method is only plotted if it ran successfully for at least half of the cases
in the decile: hence the truncated Go-ICP and Super 4PCS plots.

multithreading optimizations), whereas Go-ICP and Super
4PCS were single-threaded in C++ (although then had the
advantage of being compiled). However, the performance
trends can still be reliably understood: all methods perform
more slowly as overlap fraction drops, although HMRF ICP’s
performance does not deteriorate as quickly as the other
methods.

Fig. 5. Example Y , z̃(1), and z̃(375) (at convergence). This frame has 36%
overlap with the fixed frame. The left image shows the observed distance
to the nearest fixed point in the initial configuration; yellow is farther, blue
is nearer, and the white areas are unobserved. In the right two images, blue
pixels are outliers and red pixels are inliers, green pixels are unobserved.

VI. DISCUSSION AND CONCLUSIONS

The good performance of HMRF ICP at low overlaps can
be understood by considering the example frame with 36%
overlap shown in Fig. 5. The three images all represent values
before the first transformation is applied to the free cloud:
the first is the residual distance to the nearest fixed point, the
second is the initial setting of the z̃ field, and the third is the
converged z̃ field before the first iteration of ICP. The HMRF
model flexibly adapts to the small proportion of inlier points,
in particular it eliminates outliers across the top of the image.

The pixels that are unobserved (that is, the sensor returns no
depth measurement) occupy 31% of the image. In the initial
z̃ field, 90% of observed pixels are considered inliers, and
the remaining 10% are considered outliers. After 375 initial
EM iterations, the z̃ field has converged, and now has only
54% inliers and 46% outliers. By eliminating these outliers
before the first transformation is calculated, divergence from
the nearby optimum is avoided. An example alignment is
shown at https://youtu.be/w4eVOgd7Zes.

Despite the use of the logistic distribution to model
outliers, there were still cases where alignment failed because
of multimodal outlier residuals. To address this failure mode,
a still better representation of the residual distributions for
outliers is necessary. For instance, modeling the outliers as
a Gaussian mixture of several components could allow the
field to fit the distant outliers with one Gaussian, and the
nearer outliers as another. Using robust norms [17], [38] and
the point-to-plane metric [15] would also make HMRF ICP
more robust to imperfect estimations of which points lie in
the overlap of the two clouds.

The HMRF model for the overlap of point clouds being
aligned via ICP has demonstrated advantages at low overlap
without sacrificing performance at high overlap. The HMRF
model captures the neighbor prior and describes observed
inlier/outlier behavior well, and so can adapt to the particular
clouds being aligned. This would prove useful in the con-
struction of models from 3-D scanner data, as fewer scans
would be required, or aligning depth readings at a low frame
rate, allowing greater differences between frames.
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