
Simulation-in-the-loop for Planning and
Model-Predictive Control
Christoffer Heckman, Nima Keivan, and Gabe Sibley

Department of Computer Science
University of Colorado

Boulder, CO 80309
Email: christoffer.heckman@colorado.edu

I. INTRODUCTION

The primary goal of optimal planning and control algo-
rithms is to lay out behaviors which conserve time and/or
fuel and apply these findings to real-world systems. There are
several popular lines of development; traditional, continuous-
time control theory often has as a prerequisite that some
technical assertions about the plant dynamics be made, either
in the form of explicit equations or propositions. For nonlinear
and high-order systems, this can be a significant challenge.
Another approach involves using motion primitives combined
with stochastic search algorithms such as in RRT-based meth-
ods [9, 8, 7]. These searches invariably sample infeasible
trajectories and largely provide an open-loop approach that
is not robust to model or state uncertainty. In light of these
solution-specific requirements and drawbacks, we wish to
develop an intuitive, computationally efficient method that is
robust to uncertainty.

In this work, we present an approach to both the planning
and control of lightweight ground vehicles that makes use of
physical simulation and efficient computation to perform these
tasks concurrently and in real-time. As in our previous work
by Keivan and Sibley [5], we apply this physical simulator
both to test the feasibility of planned paths with respect to the
vehicle dynamics and the terrain, as well as in determining
the control signals required in order to follow the specified
path. The use of high-fidelity physical simulation within the
planning and control loops provides an extremely dense feed-
forward model for vehicle and terrain dynamics. Furthermore,
the approach allows for considering arbitrarily sophisticated
models of these features. This method relies crucially on the
notion that accurate and fast simulation can be used to generate
feasible plans and control signals that generate desired states
in the future.

To solve for both feasible plans and control signals that tend
toward the planned path, we employ an optimization-based
two-point boundary value problem (BVP) solver. The solver
takes as input a starting configuration, a terrain model, and a
goal configuration; combined with the dynamics of the vehicle
as it drives on the terrain, this is a well-posed two-point BVP.
In finding the solution to this problem, a feasible trajectory
is generated for the vehicle. Using the same approach, a
controller is then calculated to drive the vehicle.

II. PROBLEM STATEMENT

We consider the deployment of a ground vehicle on a given
three-dimensional terrain; the vehicle’s challenge is to drive
through a series of waypoints along the terrain. Let xα be the
vector of position and velocity on the surface of the terrain
at waypoint α, and f(x,θ) be the dynamics of the vehicle
driving on the terrain which has parameters θ(x) describing it.
The resulting two-point BVP is straightforward; we are solving
for x(t) such that:

x′(t) = f(x,θ) x(tα) = xα (1)

The waypoints have coordinates x = [Tlv v], where Tlv ∈
R4×4 is the transformation matrix from vehicle to the local
coordinates, and v ∈ R3 is the velocity at the given point. Note
that the tα may be chosen within an allowable range according
to limits on the dynamics of the vehicle controls; generally to
make the problem well-posed there is an additional stipulation
that the control terms be bounded and that the BVP is solved
for minimal time. This is a classical optimal control problem;
we use it in both our “planning” problem (finding a feasible
trajectory given the dynamics of the system) and the control
problem. The controller will minimize the difference between
the forward-simulated vehicle and the desired trajectory given
by the planned path. In order to accomplish both planning and
control, we rely on an accurate model of the environment and
the vehicle.

III. METHODOLOGY

Our approach involves simulating the effect of control inputs
to the system as they affect the system dynamics interacting
with the physical features of the terrain. We use the Bullet
physics simulator [3] to model the system dynamics in our
computations. We solve for feasible trajectories given the
current & goal poses and the intermediate terrain using an
optimization framework. When calculating the control inputs,
we still use the simulation-in-the-loop controller which solves
a BVP via optimization that relies on finite-difference estima-
tions of the gradient of the vehicle model.

We follow the motivation of model-predictive control in
order to ascertain implied underlying parameters in the system.
However, in this approach those underlying parameters are
in fact intrinsic and extrinsic physical parameters, e.g. the



Fig. 1: a) Boundary cost used for planning trajectories to waypoints. b) Trajectory cost weighted for integral of difference over
the planned trajectory; used for optimizing the control input functions.

wheel base of the vehicle and its spring coefficients. These
parameters are used in the physical simulator to determine the
overall behavior of the system with different control inputs.

A. Planning

As previously stated, planning involves determining feasible
trajectories along the terrain that are capable of optimizing
for some quantity, be it minimizing engine use or reaching
a goal in minimum time. We treat this problem by solving a
BVP between waypoints that have been specified a priori. This
requires that waypoints are placed to ignore certain impassable
obstacles since each waypoint is sacrosanct in the resulting
global path.

To plan the path between waypoints, we run a series of
simulations forward in time with various control inputs c(t)
and minimize the error in satisfying the system dynamics in
order to determine a feasible path. The cost function we wish
to minimize between each pair of waypoints is:

eb = ‖xlf �Ψl (θ, c,xi, tf )‖2 (2)

where we rename xf to be the coordinate of the next waypoint,
tf is the time at which that waypoint is reached, and Ψl is
the simulated estimate of the path for a given control input c.
We assert that whatever small perturbations from reality the
physical simulator presents are not significant in producing
deleterious dynamical behaviors, or formally Ψ � f . This
is conceivably achievable by using appropriately detailed
physical simulators. The operator � calculates the velocity
and pose error between two vehicle states; see Figure 1a for a
schematic of this arrangement. For each of the proposed inputs
the error corresponding to the simulated trajectory is used as
a cost function over which we minimize via an optimization
framework.

B. Control

Once a planned path has been calculated, we employ a
model-predictive controller such as that employed by [1] to
follow the path; this involves running a series of simulations

forward with various control inputs c(t) and optimizing for
the inputs that minimize a specified cost function. This cost
function when tracking a reference trajectory for timestep tj
is:

et =

∥∥∥∥∥∥
n∑
j=0

wjxlj �Ψl (θ, c,xi, tj) + tf

∥∥∥∥∥∥
2

(3)

where wj ∈ W = (w0, . . . , wn) is a weight imposed such that
current near-future simulation offset from the planned path is
of greater importance to the optimization. The weights may
also be used to specify certain degrees of freedom must be
more strictly enforced than others, e.g. that the vehicle should
not be allowed to roll significantly.

C. Optimization

The goal in solving the control problem is to minimize in a
least-squares sense the weighted cost. We establish a weight
matrix W = diag(wj), a basis for the control inputs as a
function of time p, an error vector for the proposed control
input r and a Jacobian J = ∂e

∂p . The optimization proceeds
by minimizing the error vector in the equation

(
JTWJ

)
p =

JTWr. Each column of the Jacobian corresponding to a
simulated trajectory is calculated via separate threads in order
to vastly improve performance. In the control optimization,
we find that if the time horizon over which we simulate tl
is too short then the optimization problem has a null solution
space; this is often resolved using heuristics to determine the
time horizon as pursued by Grieder et al. [4]. However, once
an acceptable tl is found, our optimization reduces the time
horizon by construction.

IV. RESULTS

The model learning via optimization over motion samples
as described in Section III was found to be effective in
learning the relevant car parameters. This demonstrates that
the search space for these parameters is convex and that
through normal maneuvers the relevant physical parameters



Fig. 2: Front-end of planning and control application to drive
a car around a model of a lab space with ramps and varying
terrain. Planned trajectories (continuous red line) connect the
waypoints (green cubes) and also visualize control signals
(discontinuous black lines); control candidates over which
optimization occurs are simulated with their results as the
multicolored discontinuous lines.

are observable. The machine learning framework effectively
provided approximations for otherwise difficult-to-measure
quantities such as tire and friction coefficients. In order to
make the problem more tractable, we chose to search for
control inputs over a low-dimensional space, rather than the
infinite-dimensional space of continuous functions in which
the boundary value problem is originally posed. We therefore
parametrized the control inputs by searching over the space of
Bezier curve control points as demonstrated by Choi et al. [2];
this guaranteed immediately that certain physical constraints
be considered, e.g. that the steering on a four-wheel vehicle
is continuous in time, as is the voltage to the engine. We also
found that Bezier curves provide computational efficiency in
the required search. Figure 2 shows the resulting planner and
control candidate paths as a simulated vehicle drive along a
model terrain.

The simulation-in-the-loop framework was tested experi-
mentally on a number of challenging terrain features, including
jumps, loop-the-loops and quarter pipes. The experiments
were carried out using a small remote-controlled car with all
computations made on-line but on a networked system. Pose
was provided by a Vicon motion capture system and fused
with IMU data in order to interpolate between motion capture-
provided data, and operated when such data was not available
(such as when upside-down).

V. CONCLUSIONS

Our effort applies modeled physics using fast simulation
in order to ascertain the effect of control inputs and tune

them accordingly. Feedback to disturbances is provided via
the minimization of trajectory tracking error as in Eq. (3).
Therefore even if desired physical models are not analytically
tractable, e.g. they rely on lookup tables or special functions
without tabulated derivatives, they may be fused into the
models over which simulation is executed. This enables the
use of new and exotic models for such challenging features
as granular terrain or all-wheel drive vehicles. The approach
has been successful in local planning, continuous re-planning
and controlling a car by guiding it toward a planned trajectory.
Finally, the potential for accomplishing change detection, such
as detecting a flat tire, by comparing observed behavior with
simulated behavior is an exciting possibility that could be
introduced in an intuitive fashion.

VI. FUTURE WORK

In this work, we treated this problem by solving a BVP
between waypoints that had been specified a priori. This re-
quired that waypoints were wisely placed, since each waypoint
would be fixed in the resulting global path. Furthermore, the
solving of this series of BVPs was a computationally expen-
sive process. We therefore wish to use of machine learning
approach to determine the feasible paths via a convolutional
neural network (CNN). CNNs are widely used in the image
recognition community [6], and are uniquely well-suited in
addressing the problem of planning over terrain.
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