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Abstract: While the capabilities of autonomous systems have been steadily improving in recent
years, these systems still struggle to rapidly explore previously unknown environments without
the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast
track the development of autonomous exploration systems by evaluating their performance in real-
world underground search-and-rescue scenarios. Subterranean environments present a plethora of
challenges for robotic systems, such as limited communications, complex topology, visually-degraded
sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human
supervision by combining a powerful and independent single-agent autonomy stack, with higher
level mission management operating over a flexible mesh network. The autonomy suite deployed
on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely
supervise the mission, and make high-impact strategic decisions. We also discuss lessons learned from
fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and
reconfigurable communications.

Keywords: subterranean robotics, navigation, emergency response, exploration, GPS-denied oper-
ation

1. Introduction
Despite a myriad of developments in sensing, planning, control and state estimation over the last few
decades, deploying robots in harsh subterranean environments for the purpose of rapid situational
awareness presents a number of new challenges to robot autonomy. Traditionally, robots rely on a
number of complex, interconnected subprocesses, such as localization, mapping, and planning, to
navigate unknown environments. Maintaining accurate state estimates, a process critical to mapping
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and exploration, is exceptionally challenging in subterranean environments. GPS is unavailable for
obtaining position estimates and visual-based localization methods can be affected by varied lighting
conditions and environmental factors such as heavy dust, fog, or smoke. Subterranean environments,
such as mines and caves, are often unstructured and contain hazardous obstacles, making navigation
with ground vehicles challenging. Additionally, aerial vehicles can be exceptionally difficult to
deploy in tight constrained underground spaces due to self-induced propeller wash. The DARPA
Subterranean Challenge (SubT) (DARPA, 2022) aimed to spark new developments in the areas of
autonomy, perception, mobility, and networking in subterranean environments. In the following
work, a scalable multiagent autonomy solution for subterranean exploration developed by the
University of Colorado’s Team MARBLE for the SubT Challenge is presented, along with critical
lessons learned and developments made along the way.

DARPA designed the SubT Challenge to simulate search-and-rescue scenarios in unknown
subterranean environments, and consisted of three domain-specific circuit events, Tunnel Circuit,
Urban Circuit, and Cave Circuit, followed by the Final Event, which was a combination of three
subterranean domains. Teams were challenged with developing robot platforms to deploy in each
of the events in search of sets of predefined artifacts, such as backpacks or a Bluetooth signal
produced by a cell phone. Correct identifications, consisting of an artifact classification and location
to within a 5m sphere of the ground truth location, resulted in a point scored. Placement in the
competition was determined by the team which could score the most points over a series of one hour
deployments. For the Final Event, teams were limited to a single “human supervisor” (HS) who was
able to interact with the systems and visualize any incoming data. Adding to the challenge, teams
had a limited window of time in which five team members could set up and initialize robots at the
entrance to the course.

Team MARBLE’s initial approach to subterranean exploration for the Tunnel and Urban Circuit
Events is presented in (Ohradzansky et al., 2021). Initially, a graph-based planning and exploration
strategy was implemented, the details of which are presented in (Ohradzansky et al., 2020). This
solution is suitable for tunnel-like mines that have mostly planar corridor-junction structures,
because the environment can be easily represented by a graph of nodes and edges. A scanning lidar
was used to center robots in corridors while navigating edge sections as well as avoid obstacles in the
environment. However, this approach lacked multiagent coordination, resulting in significant overlap
of explored regions by different agents. For the Urban and Cave Circuit Events, a three-dimensional
volumetric map representation of the environment was generated and used in a frontier-based
exploration strategy (Ahmad et al., 2021a; Ahmad et al., 2021b). In this approach, the exploration
rate of the robot is maximized using a frontier-based (Yamauchi, 1997) sampling technique and a
fast marching cost-to-go calculation (Sethian, 1999) to select goal poses and plan paths to them in
three dimensional space. An artificial potential function based obstacle avoidance algorithm enables
the robot to path follow while avoiding small obstacles in the environment. Our initial approach
also implemented limited forms of multiagent coordination in the form of agents sharing goal points
and paths.

Other teams developed impressive solutions to the initial Tunnel and Urban Circuit challenges.
Team CSIRO, a collaboration between the Commonwealth Scientific and Industrial Research
Organization (CSIRO), Emesent, and Georgia Tech, presents a unique homogeneous sensing solution
(Hudson et al., 2021). In this approach, heterogeneous teams of robots, including both ground and
aerial platforms, share sensor information as a part of a decentralized multiagent SLAM system.
Initially, exploration was handled through manual waypoints commanded by the human supervisor,
but eventually an autonomous exploration algorithm was implemented (Williams et al., 2020). A
common perception module, the CatPack, is used across all ground vehicles for easy reuse of the
autonomy stack across different platforms. Similar to Team CSIRO, Team CERBERUS also used
a heterogeneous team of ground and aerial platforms (Tranzatto et al., 2022a; Papachristos et al.,
2019; Tranzatto et al., 2022b). In their approach, map information from different agents is fused
into an optimized global map that is shared back to the agents (Khattak et al., 2020). Similar to the
work presented in (Ohradzansky et al., 2020), other teams used graph-based planning approaches
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for global navigation (Dang et al., 2019; Dang et al., 2020). Other noteworthy teams and their
approaches to autonomous subterranean navigation include Team CoSTAR (Santamaria-Navarro
et al., 2020; Ebadi et al., 2020; Agha et al., 2021; Otsu et al., 2020), CTU-CRAS (Rouček et al.,
2020), Team Explorer (Scherer et al., 2021), and NCTU (National Chiao Tung University) (Huang
et al., 2019). Additional discussions on the challenges, novel developments, and lessons learned from
the Tunnel and Urban Circuit Events are included in the following works (Miller et al., 2020; Lajoie
et al., 2020). One common theme common to many of these approaches is the use of heterogeneous
teams of agents with multimodal sensing solutions. By diversifying the sizes, types of locomotion,
and sensor modalities of individual robots, teams can be more versatile when faced with varied
environments, each with a unique set of challenges. This ability to be flexible and adapt to the
needs of the mission is one of Team MARBLE’s driving philosophies.

The format of the challenge necessitated advancements in platform design, robust communication
networks, intelligent planners, and a balance between autonomy and human decision making for
robot fleets. Team MARBLE’s solution, which was developed over the course of three different
circuit events and showcased at the Final Event, led to a third place finish. Specifically, we develop
a heterogeneous fleet of autonomous robots, each capable of operating independently of human
intervention. Our autonomy-first approach employs a lightweight graph-based planner that scales
to large environments, and has been adapted to reason over dynamic environments, such as closing
doors and passing agents, as well as take advantage of multiagent coordination. Information sharing
between agents is accomplished via a custom mesh networking solution with fast reconnect times
and configurable message prioritization. The same network provides the human supervisor real-
time visibility and control of the mission. Our autonomy-first philosophy inspired an autonomous
mission management system that frees the human supervisor from agent-level micromanagement
and deepens the opportunity to strategically accomplish mission goals. In this work we will present
each of the components of our proposed autonomy system, as well as a detailed performance analysis
of our solution and lessons learned along the way.

This paper is organized with the following structure. First, an overview of our system is provided
in Section 2. The robot platforms developed for the Final Event are described in Section 3, followed
by a description of the localization system in Section 4, and the artifact detection system in Section 5.
The multiagent components of our system include the volumetric mapping pipeline in Section 6
and the graph-based path planning over those maps in Section 7. Information transmitted among
agents, as well as to and from the human supervisor, is mediated by the wireless mesh network
communications system described in Section 8 and handled by the autonomous mission management
system described in Section 9. Finally, we analyze how these systems performed in the DARPA SubT
Challenge Final Event in Section 10 and discuss lessons learned in Section 11.

2. System Overview
In the following subsections, we present a high-level description of Team MARBLE’s approach to
the DARPA Subterranean Challenge. First, the general concept of operation is described, followed
by an overview of each of the major components of the developed autonomy solution. A full high
level summary of the autonomy system can be seen in Figure 1.

2.1. Concept of Operations
Team MARBLE has emphasized development of multiagent autonomy solutions that are able to
operate without requiring intervention from a human operator. This aligns with the goals of the
DARPA Subterranean Challenge where intermittent or unavailable communications with agents
from a base station or between agents is expected. Therefore, our solution is centered around robust
single-agent autonomy, where independent robots are able to explore unknown environments and
report back to a base station with collected information about the environment including map data
and detected artifact locations. In communication-limited environments where information sharing
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Figure 1. Overall block diagram showing the high level functionality of the autonomy stack. Inputs are shown
in green and outputs are shown in red. Software package names are italicized and inputs and outputs which are
shared between agents are outlined in blue. Terrain assessment and stair detection both add semantic information
to the map but are only run on the Husky and Spot, respectively.

with other agents and the human supervisor may not be available, our agents persist and continue
to execute the mission.

While it is important for single, independent agents to be able to explore autonomously, our
solution incorporates several multiagent components to improve exploration efficiency. Our fleet is
also designed to be opportunistic, capitalizing on communication links when they are available to
amplify fleet performance. Multiagent coordination is an auxiliary capability that reduces redundant
efforts when agents enter communication range with one another, and inform each other where they
have been and where they plan to go next.

Our system’s performance can further be improved when communications are available which
enables the human supervisor to have a holistic perspective of the specific search-and-rescue scenario.
This holistic perspective empowers the human to make high-level contextual decisions through two
types of intervention: directing the agent to a specific location by commanding a high-level waypoint,
or teleoperating the agent by commanding low-level velocity signals. During the 60-minute Final
Event Prize Run, Team MARBLE’s robot fleet was completely autonomous, with the exception
of five strategic low-level human supervisor interventions. The balance between human input and
autonomy is further discussed in Section 9.

2.2. Perception
A modular perception suite, shown in Figure 5b, was designed as the basis for the autonomy stack.
The primary sensor is the Ouster OS1-64 lidar (Light Detection and Ranging), which provides 3D
point clouds for mapping, localization, semantic mapping, and obstacle avoidance. A LORD Micros-
train 3DM-GX5-15 IMU (Inertial Measurement Unit) is used to measure linear and angular acceler-
ation of the sensor head for use in lidar-inertial state estimation. To identify visual artifacts, the sys-
tems are equipped with several FLIR Blackfly PGE-05S2C-CS cameras and an array of 5W dimmable
LEDs for self illumination. The Husky platforms are equipped with four cameras facing forward,
backward, to the left, and to the right. The Spot robots had a similar configuration, save omitting the
rear camera due to occlusions caused by the custom-built compute and power management system.

2.3. Localization
Localization provides consistent pose information for many downstream autonomy processes includ-
ing volumetric mapping, path planning, artifact detection, and multiagent coordination. However,
ensuring reliable localization is difficult in austere underground environments. Because conventional
vision-based solutions can be unreliable due to dark, feature-poor settings, Team MARBLE utilized
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lidar-based methods and specifically tested and integrated LIO-SAM (Shan et al., 2020), which has
fast online loop closures during long-duration missions. Several modifications were made to the sys-
tem to improve localization accuracy and reliability, which are further discussed in Section 4. Meth-
ods used to align the robots with into a common reference frame are also presented in this section.

2.4. Exploration
The exploration algorithm generates safe and traversable paths that lead agents toward unexplored
areas of previously unseen environments. The developed sampling based path planning algorithm
is designed to be lightweight, so that it can operate on rapid exploration timescales, regardless
of the extent of the environment. Computational efficiency is achieved by employing a bifurcated
local-global graph for sampling unseen frontiers as well as a good enough strategy for final selection.
In such time-constrained search and rescue settings, even humans will often make rapid decisions
rather than dwell for long periods of time to make globally optimal ones. The details of the planning
algorithm is described in Section 7.

The planner is also constructed to be flexible, so that additional capabilities could be scaffolded
on top of the core algorithm. Integration of the planning algorithm with semantic mapping was
critical for rough terrain and stair traversal, as explained in Section 6. Section 7.4 explains how
this planning algorithm re-plans in dynamic environments, whether due to doorways that are being
opened or closed, or fellow agents that are passing by. This capability is crucial for robust operation
in real-world environments, which cannot assumed to be static. Finally, the planner is able to run
more efficiently with multiple robots using multiagent coordination is covered in Section 7.3.

Agents follow paths via a modified pure pursuit controller (Coulter, 1992). The yaw rate command
is computed by comparing the current agent’s heading against a lookahead point that is a fixed
distance along the path. Forward speed is regulated based on local proximity to obstacles in the
environment and the relative heading error to the lookahead point. This results in slower speeds
when agents are in cluttered environments or experiencing large heading errors. A 2D (RP Lidar)
was used for local obstacle avoidance on the Husky platform and the Spot platform had built in
obstacle avoidance.

2.5. Mapping
Team MARBLE’s mapping framework is based on the open source Octomap package (Hornung et al.,
2013), and has been customized with additional capabilities including map merging, transmission
of difference maps, and encoding of semantic information. The core of the mapping framework is a
log-odds based probability metric for occupied and unoccupied voxels or cells. These cells provide
a 3D representation of the environment that is later used for navigation. This flexible framework
enabled transmission of key environmental features such as rough terrain and the location of stairs
efficiently through a bandwidth limited communication system. The details of our mapping system
are provided in Section 6.

2.6. Artifact Detection
The artifact detection system precisely localizes visual artifacts using RGB sensors for visual
classification and detection and lidar for the depth estimation. Nonvisual artifacts such as cellphones
and gas are localized based on the position of the robot. A weighted median filter fuses together all
detections which are sent to the human supervisor for final validation as described in Section 5.

2.7. Communication Systems
A mesh networking solution transmits data between robots and back the base station for the human
supervisor to review. Standard 2.4 GHz 802.11 wireless radios based on the ath9k chipset are used
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for the physical layer. The wireless radios are embedded in beacons that can be deployed from
the back of the Husky platforms, allowing for ad-hoc mesh networks to be established. Meshing
technology was provided by Meshmerize (Pandi et al., 2019) and a custom UDP based transport
layer (udp_mesh) was developed. Details of this innovative layer can be seen in Section 8.

2.8. Multiagent Coordination
Exploring unknown environments with multiple agents can be made more efficient through coordi-
nation, especially when agents are not within communication range. Sharing information across
agents, such as explored regions, discovered artifacts, and current behavioral states, allows for
more intelligent management of multiagent exploration. The framework called Multiagent Data
Collaboration for Autonomous Teams (MADCAT), provides the multiagent data sharing capabilities
required for the Subterranean Challenge mission (Riley and Frew, 2021), including transmission of
relevant coordination data and maps, as well as map merging functionality and decision making
for each agent. Additionally, MADCAT implements Behaviors, Objectives and Binary states for
Cooperative Autonomous Tasks (BOBCAT), originally presented in (Riley and Frew, 2022), for
high-level autonomy, decision making, and interfacing with the human supervisor. The MADCAT
algorithm is discussed in more detail in Section 9.

2.9. Mission Management
The human supervisor is able to monitor the fleet’s progression through the unknown subterranean
environment using a custom GUI operating on a computer at the entrance to the environment (base
station). Current mission status of all agents in the field (“Reporting,” “Exploring,” “Home,” etc.)
as well as their location in the global map are displayed whenever robots are within communication
range of the base station. Additionally, the goal point and goal path for each robot is visible, allowing
the supervisor to see the intent of each robot. The human supervisor is able to take over control
of a given agent by either sending manual goal points or teleoperating the vehicle using a joystick
interface with the base station. Reported artifacts are displayed per robot, with the type (survivor,
cell phone, backpack, helmet, rope), position, confidence, submission result, and an image. The GUI
also enables the modification of artifact classes and locations prior to submission to the DARPA
scoring server. An example of the GUI interface is shown in Figure 2.

Figure 2. Example of the Human Supervisor’s interface. The custom GUI is on the left, showing a received
artifact image. The middle is the multiagent RViz view, with all robots and the complete merged map. The right
is a third-person follower for each robot (two in this case) with that robot’s original unmerged map.
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3. Platform Development
For the Final Event of the SubT Challenge, Team MARBLE deployed a heterogeneous fleet
consisting of two Clearpath Husky A200s (H01, H02) and two Boston Dynamics Spots (D01, D02).
Examples of each platform are shown in Figure 3. The Husky platforms are four-wheeled skid-steer
ground vehicles capable of carrying heavy payloads, while the Spot quadrupedal “dog” platforms
are agile, capable of climbing staircases and traversing uneven terrain. The Husky platform is robust
and stable, with its generous payload budget allowing it to carry six communication beacons. The
intended deployment strategy is to first deploy the Spot platforms to maximize exploration, and
then the Husky platforms to establish the mesh communication network.

For processing power, each Husky is equipped with a 32-core AMD Ryzen CPU equipped with
128GB of RAM and 4TB of SSD storage, integrated into a complete platform as shown in Figure 4a.
Dual NVIDIA GTX 1650 GPUs were used to accelerate object detection inference speed. The

(a) (b)

Figure 3. The fleet is composed of two classes of robotic agents: (a) Clearpath Husky A200 and (b) Boston
Dynamics Spot. Each platform carries a common sensor suite designed for exploration and object detection.
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Figure 4. Power and signal routing diagrams of customized (a) Husky and (b) Spot platforms.
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(a) (b)

Figure 5. Final robot configurations, with (a) a deployment mechanism loaded with six communication beacons
on Husky vehicles at the Final Event and (b) a modular perception suite installed on both Huskies and Spots.

primary computer on the Spot platforms is an AMD Ryzen 5800U with 64GB of RAM and 2TB of
storage which is paired with a Jetson Xavier AGX to process the camera streams and perform artifact
detection, following a similar integration as shown in Figure 4b. Many purpose-built components
are common between platforms to reduce field maintenance efforts and a platform-specific code.
Each system is outfitted with a custom power system, discussed in Section 3.2, which enables the
ability to switch from a wired shore power supply to the onboard computer batteries. This leads
to more efficient use of the onboard batteries, which are a limiting factor in the duration of field
testing deployments.

3.1. Communication Beacons
Underground environments provide limited line-of-sight capabilities for wireless communications.
As a result, Team MARBLE developed custom communication beacons to complement the custom
multirobot coordination solution. This allows for robots to share information with the base station
and other robots in the field. Each Husky platform is capable of carrying six beacons, each containing
a single 2W Doodlelabs 802.11n radio as seen in Figure 5a. The autonomous beacon deployment
mechanism relies on a latching solenoid release coupled with a novel passive system to gently lower
each beacon to the ground to ensure maximum antenna height. Additional design details of the
communication beacons can be found in Section 13.1 of the Appendix.

3.2. Power and Platform Control Systems
In order to support each platform’s sensor and processing needs, as well as meet DARPA equipment
requirements for emergency stop systems, the systems integration efforts relied on several custom
hardware and software components. Where feasible, these components are shared between the Husky,
shown in Figure 3a, and the Spot platforms, shown in Figure 3b, reducing the development and
validation efforts, as well as team member operational training requirements.

Of the custom capabilities developed, the power management subsystem deserves special mention.
This component implements a hardware-interlocked, ideal diode system to permit downstream
electronics to source power from either a wall-connected power supply, referred to as shore power,
or onboard batteries. By switching to shore power, onboard systems can remain powered for
development, testing, and analysis while the batteries are charged without carrying load. Further,
the ideal diode component allows the battery packs to load share and charge independently.
In contrast to a bus-tied battery system, this ideal diode design prevents high-energy charge
equalization between packs and allowed each battery pack’s onboard management board to function
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independently. The system also enables live monitoring of current consumption and battery voltage,
as well as intelligent e-stop management which ensures the robot cannot exit the emergency stopped
state while connected to shore power.

Emergency stop requirements dictated that each platform needed the ability to be stopped by a
physical button, software, and via a DARPA deployed Xbee network. On the Husky control system
the emergency stop system was integrated directly into the base controller. In contrast, the Spot
platform’s emergency is tied into the available API to issue a “sit” command before terminating
power to the motors which allowed the robot to be stopped gracefully.

Several important lessons learned emerged after three years of platform architecture development.
We have highlighted the most critical lessons below and provide more details about the design and
consequences of our platform compute systems in the Section 13.2 of the Appendix.

As part of our field testing campaign, we uncovered an issue where our USB-connected IMU
was delayed in delivering measurements critical to localization performance. From an integration
perspective, our IMU’s USB interface was implemented using a standard USB Communications Data
Class Abstract Control Model (CDC-ACM) interface. Using CDC-ACM for IMU measurements
was particularly problematic due to the way in which CDC-ACM uses bulk transport. USB has
several methods of transferring data from device to host, including interrupt, isochronous, and bulk
transport. CDC-ACM uses bulk transport, which does not include any guarantee for on-time delivery
of data. As a consequence, during high CPU load, IMU measurements were occasionally delayed
and resulted in localization error. In contrast, interrupt and isochronous transports are regularly
serviced and can deliver on-time data. This problem could be solved in future deployments by
either replacing the bulk interface with an interrupt interface or by using legacy serial interfaces
such as RS-232 (not typically available on small form factor computing units). However, in practice,
we found adjusting the IMU timing as described in Section 4, was sufficient and did not require
engineering new firmware.

Another critical piece for reliable localization and consequently navigation is sensor synchroniza-
tion. Synchronization is fundamentally necessary in order for our onboard sensors to communicate
with their respective computers, and for those computers onboard individual agents to communicate
with each other and the base station computer. The technical implementation of our solution is
detailed in Section 13.3 of the Appendix.

4. Localization
One of the major challenges in the DARPA Subterranean Challenge is ensuring reliable localization
across a diverse set of austere environments. Localization is a critical process for an autonomous
system, as it provides pose information to downstream autonomy processes including volumetric
mapping, path planning, artifact detection, and multiagent coordination. Section 4.1 details the
simultaneous localization and mapping solution that was integrated into the autonomy stack, and
Section 4.2 describes the process used to align all robots to the common DARPA reference frame.

4.1. Simultaneous Localization and Mapping
Simultaneous localization and mapping has relatively mature vision-based solutions (Leutenegger
et al., 2015; Nobre et al., 2017; Qin et al., 2018), thanks to advances in feature extraction (Cheung
and Hamarneh, 2009; Bay et al., 2008; Zhan et al., 2018). However, in mission-critical applications
such as underground search and rescue, visual-inertial solutions are not reliable enough when faced
with irregular lighting, specular highlights, and feature-poor scenes. Recent work has illuminated
the possibility of leveraging thermal-based odometry estimation in visually degraded environments
(Khattak et al., 2019; Wisth et al., 2021).

Because underground environments are typically rich in geometric features, lidar-based local-
ization solutions are a compelling alternative. Some spaces though, such as a smooth tunnels
and corridors, contain relatively few longitudinal features, and therefore pose limits to lidar-based
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perception. Single-echo lidar also struggles in austere environments containing fog or smoke, though
some recent work has focused on addressing these limitations (Shamsudin et al., 2016).

For the Final Event, Team MARBLE transitioned from Google Cartographer (Hess et al.,
2016) to LIO-SAM (Shan et al., 2020), since its faster online loop closures during long-duration
missions results in greater localization accuracy. Extensive testing was conducted in many different
environments including parking garages, academic buildings, gold mines, and outdoor environments.
The fast, lightweight loop closure performance can be attributed to performing scan-matching on a
local level rather than a global level. LIO-SAM additionally performs IMU pre-integration to deskew
point clouds, yielding better initialization for lidar odometry estimation. Because localization is the
foundation to many autonomy modules, it was imperative to validate LIO-SAM’s performance
onboard the Spot and Husky platforms during large-scale, long-duration missions. Some examples
of such validation efforts are shown in Section 13.4 of the Appendix.

Several modifications are made to the system to improve localization accuracy and reliability.
First, the IMU and lidar sensors are fastened to a 6061 aluminum sensor plate, with a mounting
configuration that is common between Huskies and Spots. By specifying the relative transform
between the two sensors to a high precision, the need for extrinsics calibration is reduced. Specifically,
the mounting configuration consists of a tight-tolerance, precision-ground plate with a flatness
tolerance of 0.005”, which greatly improves the roll and pitch alignment between the two sensors.
By using a high-quality MEMS IMU and such precise sensor mounting, the LIO-SAM parameter
specifying how much to weight IMU roll, pitch, and yaw measurements relative to lidar odometry
was increased by a factor of 100. Taken together, these modifications greatly reduce accumulated
rotation and translation drift, enabling smooth autonomous operation across long missions.

Secondly, LIO-SAM requires sensor timestamps to be aligned and sensor rates to be consistent.
In particular, if IMU message rates fluctuate too greatly, the IMU pre-integration factors (Forster
et al., 2015) can fail and lead to LIO-SAM instability. To reduce sensitivity to fluctuating IMU
sensor rates caused by USB transmission delays (described in Section 3.2), the IMU timestamp
assignment is adjusted when messages are not received within 15% of the nominal rate. Additionally,
the lidar sensor is synchronized with the onboard computer via PTP as discussed in Section 13.3
of the Appendix. These two timing solutions reduce the probability of erroneous measurements and
greatly improve the stability of LIO-SAM.

4.2. Common Reference Frame Alignment
Accurate multirobot alignment is a core design decision for the MARBLE localization, mapping,
and planning systems. Robots are required to share globally aligned map data for planning and
navigation. In addition, it allows the human supervisor and robots to share global coordinates for
artifact locations relative to the DARPA-provided world frame. In order to align with the DARPA
frame, Apriltags (Malyuta et al., 2019; Brommer et al., 2018; Wang and Olson, 2016), retro-reflective
targets, and Leica Total Station (LTS) reflectors are attached to a gate with relative transforms to
the DARPA origin frame. The full setup of the gate setup is illustrated in Figure 6. The global
frame was assumed to be aligned with gravity, but each team was responsible for aligning yaw,
and XYZ-translation from their robots to the common DARPA frame. In the context of the SubT
Challenge, the DARPA frame was purely used to align robots into the measured ground truth frame
for artifact scoring and map accuracy analysis. However, in practice, an accurate initial alignment
between robots results in more reliable multiagent coordination and global merging maps.

In order to align with the common reference frame, MARBLE primarily relied on the LTS
reflectors. Based on conventional trigonometry and the assumption of needing to maintain less
than 5m of error over the course of a 1km linear distance, it is determined that an initial alignment
target required less than 0.29◦ of error.

To align the robot, 3 reflective prisms are attached to each robot, and their positions are scanned
with an LTS. These points VLR are then compared with a ground-truth set VR, determined by the
relative locations of the prisms to the robots tracking frame via CAD. These two sets of points are
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Figure 6. Figure of the MARBLE gate alignment setup including the Leica Total Station (LTS), gate, and
an example robot. Transforms from the LTS to the robot TRL, from the LTS to the world frame TW L, and the
resulting transform from the world frame into the TW R .

used to estimate the transform between the LTS recorded positions and the assumed positions by
minimizing across the pose X to solve:

argminX
∑
||VLR − VRTRL||. (1)

The result is the robot’s position in the LTS frame TRL. An additional calculation is used between
scanned points of the gate VLG and the provided coordinates VW are used to solve for the gate’s
position in the Leica frame TWL using the equation:

argminX
∑
||VLG − VWTWL||. (2)

Both minimization problems were solved using Horn’s absolute orientation method (Horn, 1987),
a closed form solution to least squares alignment problems. Given these transforms, the robot’s
position in the world frame was calculated by inverting the robot to LTS transform:

TWR = TWL(TRL)−1. (3)

To further reduce the impact of minor errors in either prism localization or low observability, these
transforms are altered slightly by each robot. The LTS-predicted pitch and roll is substituted with
an estimated pitch and roll from the lidar-inertial localization system, largely based on the initial
measurements of the IMU.

After these adjustments, yaw estimates had the largest impact on our resulting transforms.
Because yaw error has the potential to propagate to large translational discrepancies at far distances,
it became imperative to modify our system. The solution involves increasing the lateral spacing of
the prisms mounted on the robots, and is described in more detail in Section 13.5 of the Appendix.

5. Artifact Detection
A core component of the SubT Challenge is the detection and localization of objects that could
potentially indicate human presence. Each artifact needed to be reported within a 5m radius of
the ground truth location. To achieve this requirement a lidar-inertial based state estimator as
described in Section 4 is used. Robots are put into a common reference frame based on survey-
grade measurements from a Leica Total Station (LTS) and objects are projected using the mapping
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Table 1. Sensing modalities, that Team MARBLE utilized (+) and did not utilize (–) for
detecting the ten artifact classes. Blank entries indicate sensing modalities that are not
useful for detecting specific artifact classes.

Artifact Class Visual Thermal Wireless CO2

Survivor + –

Cell Phone – +

Backpack +

Drill +

Fire Extinguisher +

Gas +

Vent + –

Helmet +

Rope +

Cube – +

framework described in Section 6. The available sensing modalities for various artifacts are discussed
in Section 5.1, the visual detection system is described in Section 5.2, and the nonvisual detection
system is explained in Section 5.3. The resulting performance of the artifact detection system at the
Final Event is detailed in Section 10.4.

5.1. Sensing Modalities
Table 1 shows the classes of artifacts present at the Final Event along with the types of sensing
modalities capable of detecting each artifact. Each robot in the fleet is equipped with RGB cameras,
Bluetooth modules, and CO2 sensors which enable the detection of all classes of artifacts using a
minimal sensor suite. The visual detection system is not trained to detect either the cell phone, due
to its small form factor, or the cube artifact which is detectable using Bluetooth. The cube artifact
has rotating colors which pose significant challenges for visual detection methods.

5.2. Visual Detection
Visual object detection is a well-researched problem in computer vision and state of the art detectors
are capable of identifying objects in both 2D and 3D. Common 2D detectors are typically based on
Convolutional Neural Networks (CNN) (Zou et al., 2019), such as region proposal-based networks
like Fast R-CNN (Girshick, 2015). Typically these networks require multiple passes over an image
to classify an object and then detect where the object is in the image. In contrast, YOLO (Redmon
et al., 2016) performs both classification and detection in a single regression making it a significantly
faster detection: 0.5 frames per second (FPS) for Fast R-CNN and 45 FPS for YOLO. Object
detectors operating in 3D typically use point clouds obtained from a lidar and until recently were
limited to classification rather than full detection (Maturana and Scherer, 2015; Qi et al., 2017).
Extensions to 3D classifiers such as Voxelnet (Zhou and Tuzel, 2018) and PointRCNN (Shi et al.,
2019) are capable of performing object detection on powerful GPUs. These GPUs are impractical
from both a size and power consumption standpoint for mobile robots. We selected the Yolo V3
(Redmon and Farhadi, 2018) model due to the fast and accurate nature of the YOLO (Redmon
et al., 2016) family of networks.

Specifically, for classification and detection, the visual pipeline utilizes a YOLO V3 Tiny (Redmon
et al., 2016) model with custom trained weights. The model is optimized for Nvidia TensorRT
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acceleration and we infer images at a resolution of 608x608. The Husky platforms are able to perform
inference at 60 FPS on a GTX 1650 based on Nvidia’s Turing architecture with 896 CUDA cores and
112 RT cores. The Spot platform uses a Nvidia Jetson Xavier AGX based on the Volta architecture
with 512 CUDA Cores and 64 Tensor cores to perform inference at 40 FPS. These GPUs were chosen
to balance performance against size and power constraints for on-board compute. The TensorRT
YOLO detector outputs a message containing the detected artifacts as well as the coordinates of
their bounding boxes.

A systematic procedure targeted at low-light conditions is used to train the model. At each
location, data was collected using three different brightness levels to minimize the impact of lighting
conditions on the model’s performance. Specifically, images were taken from past circuit events as
well as separate field exercises. Images with excessive motion blur were subsequently filtered out and
the data was later augmented with images that contained false positive defections. The full details
of our training procedure can be found in Section 13.6 of the Appendix.

Depth registration is performed using marble_mapping as described in Section 6 which is
generated by the Ouster 64-beam lidar. Utilizing an Octomap based framework allowed us to avoid
implementing any additional filtering due to the probabilistic nature of the map. Additionally, the
Octomap structure aggregates scans into the map with temporal memory. This important feature
resolves the inconsistency between the 33.2◦ vertical field of view of the Ouster and the 68◦ vertical
field of view of the cameras. At further distances, the agent is able to incrementally build out regions
near ceilings and floors, overcoming the vertical blind spots of the Ouster. Essentially, this temporal
memory allows us to decouple the depth measurement from the visual artifact detection. The biggest
drawback of this approach is the potential for an additional 0.15m of error on each detection due to
the voxel resolution. However, this error figure still falls within the design constraints of localizing
an object to within 5m of its desired location.

After 3D coordinates are obtained via the Artifact Localization node, we run a weighted median
filter in the world coordinate frame to de-noise the projected location within the Artifact Fusion
node in Figure 7. Each localized artifact is considered to be part of the same measurement if it is
the same class as a previous measurement and within 5m of that measurement. We then require five
to 10 positive detection events and use the median position as the reported position to the human
supervisor. The final detection is published in a custom ROS message which contains this position
as well as a compressed version of a corresponding camera image and associated bounding box. The
full overview of the artifact system can be seen in Figure 7.

5.3. Nonvisual Detection
Cell phone, cube, and gas reports are also fused using a weighted median filter. The Bluetooth
and CO2 detections are simply localized to the position of the robot at the time of detection.
Bluetooth detections are also grouped together by unique SSIDs and gas detections within 10 m

Gig-E Cameras TensorRT YOLO Artifact
Localization

Classification and Detection

Artifact
Fusion

Robot
Localization/Mapping

Artifact Message

Bluetooth
CO2

Figure 7. Overview of the artifact detection system. Sensor inputs are shown in red and outputs are shown in
green.

Field Robotics, January, 2023 · 3:125–189



138 · Biggie et al.

of another detection are assumed to have originated from the same source. The final positioning of
these nonvisual artifacts relies on input from the human supervisor. Our human supervisor interface
was designed to easily allow for movement of reported artifacts based on features observed in the
map by the human operator. The details regarding the accuracy and success rate of these reports
can be found in Section 10.4.

6. Mapping
Team MARBLE’s custom mapping package, marble_mapping (Riley, 2021) is based on Octomap
(Hornung et al., 2013) and is used to generate 3D occupancy grid representations of the world.
The environment is subdivided into voxels, or cells which are marked as either occupied, free, or
unknown using a probabilistic log-odds based model operating on sensor returns. The output of
marble_mapping is a direct input to the path planner and also provides depth measurements for
visual artifact detection, as well as situational awareness for the human supervisor. The Octree
(Meagher, 1982) structure of Octomap’s occupancy grids makes storing and transmitting maps
more efficient than other representations such as point clouds; this efficiency is highly desirable when
trying to transmit maps over low bandwidth mesh networks. Marble_mapping extends Octomap by
enabling map differences for low bandwidth transmission, map merging between multiple robots,
and the addition of semantic information.

6.1. Difference-Based Map Merging
Despite the efficient encoding of the Octree data structure, regularly transmitting full volumetric
maps of the explored space is impractical in bandwidth-constrained subterranean environments.
Map differences are both a natural solution to reduce bandwidth, and have been shown to facilitate
efficient data transfers (Sheng et al., 2004). In the marble_mapping package, modifications to
Octomap package were made to generate differences between different map sections, or “diff maps”
shown in Figure 8. The implementation allows for diff maps, or smaller Octree structures, to be
created at a predetermined rate, and contains all the mapping data for that time interval. The sum
of an agent’s diff maps make up its “self” map and the differences can be transmitted to other agents.
These differences are later merged into the robot’s “merged map” in the map merging process which
is shown in Figure 8.

Merged maps generated from multiple agents are important both for a more complete view of the
environment, and they also reduce redundant coverage in coordination strategies (Ko et al., 2003;

Figure 8. Sequential difference maps from top left to bottom right, with the final map on the far right constructed
in real time for comparison. The diff maps can be merged to fully reconstruct the original map shown in the
bottom right.
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Simmons et al., 2000; Zlot et al., 2002). The marble_mapping package enables map merging both for
individual agents and on the base station which allows agents to intelligently act on the data and pro-
vides a holistic view for the human supervisor. The system does not re-align maps prior to merging,
as it is assumes agents are already in a common reference frame as described in Section 4.2. The lack
of a re-alignment feature has the potential to cause one agent’s map to block pathways in a receiving
agent’s map. To mitigate this, each agent prioritizes its own map by only appending cells from other
maps into “unknown” areas. Areas that have already been “seen” by the agent are left untouched
which prevents misaligned data from blocking free space. In cases where this mitigation procedure
is not enough, such as narrow hallways, or a complete loss of localization by an agent, “bad” map
diffs can be removed by the human supervisor using the base station GUI described in Section 9.

6.2. Semantic Mapping for Terrain-Aware Navigation
While the volumetric-based mapping produced by the Octomap framework provides the high-level
structure of the environment, its resolution, set to a voxel size of 0.15m, is too coarse to capture
details needed for high fidelity motion planning. In order to augment the existing marble_map
with terrain information, Team MARBLE evaluates the traversability of a given voxel using the
normal and curvature values from raw point clouds. The planning solution is then able to utilize
this semantic information to plan safe paths as described in Section 7. An additional label is attached
to each voxel which enables the semantic labeling of staircases for the Spot platform.

Early approaches to evaluating the traversablity of an environment include elevation based maps
based on a 2D lidar (Ye and Borenstein, 2003) but are unable to take advantage of modern 3D
sensors. The traversability classifier presented here is largely based on the Grid Map framework
presented in (Fankhauser and Hutter, 2016), which evaluates the slope and roughness of point
cloud regions to generate a multilayer surface map but only creates a 2D grid rather than a 3D
volumetric map. Other fielded approaches in subterranean environments include “virtual surfaces”
on occupancy maps (Hines et al., 2021) and Conditional-Value-at-Risk metrics, such as collision,
step size, tip over, and slippage, which are incorporated into a dense 2.5D gridmap (Fan et al.,
2021). These dense methods typically come in the form of high-resolution local maps, which enable
more precise locomotion over varied terrain. An alternative approach presented in (Krüsi et al.,
2017) computes paths with continuous curvature over raw point clouds. However, by computing
semantic traversability information, our planning approach only required a low-resolution global
map, greatly simplifying both mapping and planning systems and allows for sharing of semantic
information between agents.

6.2.1. Traversability Classification & Map Integration
To estimate the traversability of a voxel, we segment the 3D point cloud produced by the Ouster
lidar, and evaluate the unit normal vector n̂ and curvature K of each point p at time step t.
All calculations are performed with the aid of the pcl package (Rusu and Cousins, 2011) and a
traversability value, τp,t, is estimated for each point using Equation 4 where k̂ is the gravity-aligned
up vector, (1 − |n̂ · k̂|)3 is a measure of the slope of the terrain, and cnorm and ccurv are tunable
parameters. The parameter values for the Final Event were set to cnorm = 40.0, and ccurv = 4.0,
and τp,t ∈ [0, 1].

τp,t = cnorm(1− |n̂p,t · k̂|)3 + ccurvKp,t ∈ [0, 1] (4)

Traversability is implemented in the Octomap framework using Equation 5 to estimate the
traversability, τv,t, of a given voxel, v, as a function of the voxel’s occupancy probability, Pocc,v,t.
The traversability estimate for the voxel is a linear combination its previous traversability estimate,
τv,t−1, and new estimate τp,t for the points in the voxel. An example of this process is shown in
Figure 9.

τv,t = τv,t−1Pocc,v,t + τp∈V,t(1− Pocc,v,t) ∈ [0, 1] (5)
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(a) (b)

Figure 9. Traversability information (a) of section within the Edgar Experimental Mine in Idaho Springs, CO,
USA, that contains railroad tracks. Raw traversability values of the lidar point clouds (top) are shown, where
white is not traversable, and black is traversable. Resulting semantic map (bottom) illustrated nontraversable
surfaces such as walls in white, traversable surfaces such as the ground in black, and semitraversable surfaces
such as the railroad tracks in grey. Note that red voxels do not contain traversability data. An accompanying
photo (b) of the section of mine is shown for reference.

6.2.2. Stair Classification & Map Integration
Semantic information on stairs is fused into the mapping framework using the open source Stair-
wayDetection (Westfechtel et al., 2018) package and a binary Bayes filter (Thrun et al., 2005). Stair
classification of point clouds via this approach consists of 4 major steps: (1) preanalysis, in which
the point cloud is downsampled and filtered, normal and curvature is estimated for each point, and
floor separation is performed; (2) segmentation via a region growing algorithm, which segments the
point cloud into smooth regions; (3) plane extraction, in which the surfaces that make up the riser
and tread regions of each stair step are extracted; and (4) recognition, where the tread and riser
regions are connected and analyzed via a graph to determine whether they make up a valid set of
stairs.

Stair detections are integrated into the map using a similar mechanism to the log-odds probability
which determines occupancy in octomap. A binary Bayes filter (Thrun et al., 2005), shown in
Equation 6, is used to estimate the probability that a given voxel is a part of a staircase. The
extracted points from the stairway detector are modeled as measurements z, where Pstair(n|zstair,t)
is the probability that a voxel n is part of a staircase. The measurement through time step t is
represented by zstair,1:t as shown in Equation 6a. Lstair(n|zstair,1:t) as shown in Equation 6b are the
corresponding log-odds probabilities which are used for fast updates updates to the probabilistic
estimate of each voxel. More details of the log-odds formulation are provided in (Hornung et al., 2013;
Thrun et al., 2005). Our filter is tuned to prioritize true positive detections with the following param-
eters: Pstair(n) = 0.5, Lstair,min = −2.0, Lstair,max = 3.48, Lstair,hit = 4.60, and Lstair,miss = −0.04.

Pstair(n|zstair,1:t) =
[
1 + 1−Pstair(n|zstair,t)

Pstair(n|zstair,t)
1−Pstair(n|zstair,1:t−1)
Pstair(n|zstair,1:t−1)

Pstair(n)
1−Pstair(n)

]−1
∈ (0, 1), (6a)

Lstair(n|zstair,1:t) = Lstair(n|zstair,1:t−1) + Lstair(n|zstair,t) ∈ [Lstair,min,Lstair,max] , (6b)
where Lstair,min ∈ (−∞, 0) , Lstair,max ∈ (0,∞) ,

Lstair(n|zstair,t) =
{
Lstair,hit > 0 on stairs
Lstair,miss < 0 on nonstairs

.
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(a) (b)

Figure 10. Spot planning up a staircase using the estimated stair voxels in the Octomap shown in blue.

A raycast operation on the footprint of the vehicle is used to provide a binary signal indicating
the robot is on stairs. Additionally, eigenvector decomposition is performed over each cluster of stair
voxels to extract a straight path along the staircase. Figure 10 provides an example of the semantic
classification of stair voxels, along with the corresponding path along the stairs. These triggers
provide waypoints so that the local trajectory follower can navigate to the top of the staircase. It’s
important to note that since stairs would generally be classified as nontraversable, a stair label takes
precedence over a traversability label for the Spot platform, which is capable of walking up stairs.
Additionally, this method requires sufficient lidar scans of the staircase, which is generally available
when located at the bottom of a staircase but is not when facing the stairs leading down. As a result,
detecting and navigating a descending staircase is not feasible with the current configuration, but
could be with a wider field-of-view sensor or programmed forward pitching behavior of the Spot.

The marble_mapping package enables the creation of difference-based Octomaps which allows for
efficient transmission in underground environments. Furthermore the framework provides semantic
and traversability information which the planner utilizes to ensure the robot is able to navigate
safely. Details of the planner are described in Section 7.

7. Path Planning
Team MARBLE’s heterogeneous fleet relies on autonomous path planning onboard each agent
to reduce the workload of the human supervisor. The path planner running onboard each agent
generates safe and traversable paths that lead to unexplored areas. Paths are planned on the
Octomap-based marble_mapping framework described in Section 6. Team MARBLE used the same
planner on all robots with the only difference being the collision-function depending on vehicle’s
class. For instance, a wheeled robot cannot traverse stairs while a legged robot can. Existing
methods discussed in Section 7.1 suffer computational costs that make it challenging to scale to large
environments. Because the proposed planner is computationally efficient and minimally dependent
on tuning gains, it performs well in large-scale environments. Our planner makes several significant
contributions, such as light on-demand terrain assessment, which is discussed in Section 7.2,
hierarchical solution-search that also incorporates position history-based multiagent coordination,
which is discussed in Section 7.3, and handling of dynamic changes in the environment such as
blocked passages, which is covered in Section 7.4.

7.1. Background
One of the widely-known methods (Yamauchi, 1997; Ahmad et al., 2021a) for autonomous explo-
ration relies on explicitly detecting potential frontiers on an explored map, followed by a path
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planned toward each cluster of frontiers. The method seeded significant developments in the area
of autonomous robotic exploration since it was first proposed. However, this frontier-based method
employs a computationally expensive optimization-based approach that plans paths to each frontier
cluster, despite the fact that some may not be reachable.

In recent decades, the planning community has witnessed significant advancements in more com-
putationally efficient sampling-based approaches for path planning and exploration. One instance
of such development is an exploration planner that uses Rapidly Exploring Random Trees (RRT)
(LaValle, 2006) to sample an environment and chooses an optimal path from the set of sampled ones.
The method samples the environment as a single batch, and therefore is not scalable to large-scale
environments. A rectification of this limitation is recently proposed by (Dang et al., 2020) where
a bifurcation approach is introduced for sampling and exploration. This approach implies that the
environment is sampled only in the local neighborhood of a robot while simultaneously building a
sparse graph that scopes the entirety of the explored map. The latter is essential to deal with local
minima such as dead-ends and also to plan a path back home. Our autonomous exploration solution
for the SubT Final Event relies on the principle of bifurcation with additional contributions in the
terrain assessment, solution-search, dynamic obstacle avoidance and coordination.

The graph-based planners based on sampling and bifurcation approach use high resolution depth
images to compute a 2.5D grid-based elevation map using the technique presented in (Fankhauser
et al., 2018). This elevation map is further filtered to segment terrain characteristics such as slope,
roughness and step (Wermelinger et al., 2016). The authors of such graph planners mention the
scalability challenges with such computationally expensive approaches, which limit their terrain
awareness to regions local to the agent. This further leads to challenges such as the planned path
and the underlying graph being generated with an over-optimistic view of the terrain, consequently
needing the robot to be backed up if it encounters impassible terrain.

7.2. Sample-and-Project Strategy
To rectify the terrain assessment challenges, a sample-and-project approach is followed, similar
to the settling-based collision-check approach proposed in (Krüsi et al., 2017). We perform such
checks on an Octomap with a resolution of 0.15m. At this resolution, all of team MARBLE’s
robots were at least three voxels wide, providing a decent amount of robot footprint to project
a robot’s pose on. The SubT Challenge rules highlight that the extremely narrow passages could
be around 1m wide, with doorways as narrow as 36 inches. With this in mind, an Octomap voxel
length of 0.15m was small enough to navigate narrow passages and large enough to be able to
keep up with computational complexity of generating such a map in a large-scale environment. In
case of a wheeled robot, each voxel in the Octomap is labelled with a roughness value which is
obtained using high resolution point clouds as described in Section 6.2. However, on Spot legged
robots dense roughness information is not required because of their onboard terrain assessment.
Additionally, for Spots, encode semantic information about stairways into the map which overrides
the default height parameters of the planner. With explicit labels, the planner is able to plan paths
over built up staircases despite elevation changes the robot would not normally traverse over. More
formally, for the legged robots capable of traversing stairs, each Octomap voxel maps to a label
from the set {“occupied,”“unknown,”“free,”“stair”}, whereas in case of wheeled robots the label set
is {“occupied,”“unknown,”“free,”“rough”}.

First, the environment is sampled in the local neighborhood of the robot using RRT∗, a variant
of RRT with optimality considerations. Each tree sample is a robot position parameterized by the
robot width and length. During sampling, the collision-checks are performed by vertically projecting
a query sample to find the ground below it. Once the ground is found, the elevation change at the
footprint of the sample is evaluated if there are enough projections on occupied voxels. In case
of a wheeled robot, the average roughness information of the footprint voxels is also taken into
consideration. For a legged robot, if a threshold amount of footprint voxels are labelled as “stairs,”
the sample is considered collision-free regardless of the elevation or roughness check. Expanding
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Figure 11. A depiction of sample-and-project strategy for terrain checks on an OctoMap. The figure shows
four different types of query poses. (a) and (b) depict collision-free samples whereas (c) and (d) are marked
undercollision or nontraversable.

(a) (b) (c)

Figure 12. The figures highlight the planner solution search. The potential solutions for the planner include the
paths leading toward the leaves of the RRT∗ tree (blue) and the frontiers of the graph (green). (a) The first
preference of the solution is the path that aligns best with the robot’s exploration heading (bold blue path). In
case this path has both sufficient volumetric gain and teammate separation, it is returned as a solution. (b) As a
second preference, a thorough search is performed to find a local or global path that satisfies both constraints.
(c) If none of the paths is found at both of the steps above then a path that satisfies the volumetric gain
constraint is accepted as a potential solution.

an RRT∗ requires checking path segments for collisions instead of isolated robot configurations. In
order to check such a path segment, a set of robot configurations along the segment is checked for
traversability. Figure 11 depicts the terrain assessment process.

7.3. Solution Search and Multirobot Coordination
At any replan iteration, a set of potential solutions include all of the local paths sampled using RRT∗
and all of the global paths ending at the graph frontiers. The former set of solutions is represented by
PL and latter solutions belong to the set PG. A set of all local paths that are leading the robot toward
areas with greater than a defined threshold of volumetric gain and teammate separation are given
as PLV and PLS , respectively. Similarly, a set of all global paths that are leading the robot toward
areas with greater than a defined threshold of volumetric gain and teammate separation are given as
PGV and PGS , respectively. These sets are highlighted in Figure 12. A typical approach to find an
appropriate solution is to form an objective function with a combination of exploration objectives
such as volumetric gain and exploration heading parameterized by the penalty gains. Volumetric gain
calculation, however, is a computationally expensive operation that limits the amount of frontiers
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a robot can process in a reasonable amount of time. Our approach relies on finding a good enough
solution in terms of volumetric gain. To achieve multirobot coordination, the position histories of
teammate robots on the network are used. If a path is leading a robot to a point such that the
minimum distance of the point from the position histories of the teammate robots is more than the
mapping range, it is guaranteed that new areas are being explored.

Following this intuition, the primary objective of Team MARBLE’s solution search method is not
to optimize for the volumetric gain and the teammate position histories separation, but to accept a
solution that has a satisfactory amount of volumetric gain and distance from the teammate position
histories. The formal objective of the path planner is to output a solution that belongs to PLV ∪PLS ,
PGV ∪PGS , PLV , or PGV in the order of preference. The solution search process makes use of two
different objective functions,

Jα = c0DP (phist, pcand)− c1|θexplore − θcand
mean| − c2|hexplore − hcand

mean|, (7)

Jβ = −c1|θexplore − θcand
mean| − c2|hexplore − hcand

mean|+ c3GV (pcand(1)) + c4DS(pcand(1), phist
1 , . . . , phist

1 ),
(8)

where Jα is used to find a candidate path that aligns best with the current exploration heading of
the robot and Jβ is leveraged to perform a thorough search if required. The sets of points pcand

and phist represent a list of candidate solutions and the position history of a robot respectively.
The exploration heading θexplore is calculated by averaging the most recent few points on phist

of the robot. The mean heading and mean height of a candidate path are denoted by θcand
mean and

hcand
mean respectively. The function DP accepts two paths as arguments and calculates the mean of

minimum distance of all points along the first path with the second path. Furthermore, the function
DS calculates the minimum distance of a candidate path from the position histories of all other
teammate robots.

Algorithm 1 provides a deeper insight into the solution search steps. As a first step, a collision-free
local path is found that best aligns with the direction of travel of the robot. This path is then checked
if it has a satisfactory amount of volumetric gain and distance from the teammate position histories.
If a good-enough solution is found at this step, the solution is returned and only a single volumetric
gain function call is required. Therefore, we save significant computation time during most replan
iterations. If a solution is not found at this first step then a more thorough search is performed, first
through the sampled local paths and then through the global paths leading toward graph frontiers.
This search is highlighted in Algorithm 1. The functions PlanLocally() shown in Algorithm 2, and
PlanGlobally() shown in Algorithm 3, are responsible for outputting solutions that satisfy both
volumetric gain and teammate separation constraints if possible, otherwise they output solutions
that only satisfy the volumetric gain constraint. In the worst case, when neither constraint can be
satisfied, paths with maximum teammate separation are returned as a contingency.

This attempt of finding a solution by breaking the potential solution space down into subsets
instead of having one objective function to optimize over the entire space, helped us avoid extensive
gain tuning. During testing and final event runs, we found our approach to be scalable for
environments of various sizes without a need for tuning gains for different environment types. The
details of the sampling-based path planner can be found in (Ahmad and Humbert, 2022). In this
work, a simulation comparison of the proposed planner with an existing sampling-based planner
(Dang et al., 2020) is presented, highlighting the improvement in scalability and computational
efficiency.

7.4. Dynamic Replanning
Another challenge faced by the existing graph-based planners is that they rely on building a parallel
graph representation of the environment. This representation does not naturally reflect changes in
the environment, such as closed passages which were initially open at the time the graph is built.
To handle this exception, the graph edges are labeled with a boolean representing its occupancy.
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Algorithm 1. ScanPlan Solution Search.

1: pl
α ← pcand

∈ PL costing minimum Jα
2: if GV (pl

α ) ≥ v g
thresh and DS (pl

α ) ≥ sg
thresh then

3: return pl
α

4: end if
5: pl

β ← PLANLOCALLY()
6: if pl

β is non-empty and DS (pl
β ) ≥ sg

thresh then
7: return pl

β

8: end if
9: pl

← pl
β

10: pg
← PLANGLOBALLY()

11: if pg is non-empty and DS (pg ) ≥ sg
thresh then

12: return pg

13: else if pl is empty and pg is empty then
14: return pl

α

15: else if pg is empty or
(pl is non-empty and DS (pl ) ≥ DS (pg )) then

16: return pl

17: else if pl is empty or
(pg is non-empty and DS (pg ) ≥ DS (pl )) then

18: return pg

19: end if

Algorithm 2. PLANLOCALLY(). Returns a path in PLV
∩ PLS or PLV in the order of preference.

1: Jβmin ←+ inf
2: pres

← none
3: success← false
4: for pl ∈ PL do
5: if GV (pl ) ≥ v g

thresh and DS (pl ) ≥ sd
thresh and ∼ success then

6: Jβmin ← Jβ (pl ), pres
← pl , success← true

7: else if Jβ (pl ) ≥ Jβmin then
8: continue
9: else if (GV (pl ) ≥ v g

thresh and DS (pl ) ≥ sd
thresh) or (GV (pl ) ≥ v g

thresh and ∼ success) then
10: Jβmin ← Jβ (pl ), pres

← pl

11: end if
12: end for
13: return pres

During exploration, the planned paths are constantly checked for collisions. If a planned path is
under-collision, all edges in the local neighborhood of the robot are validated for collision and
marked accordingly. Moreover, all occupied edges are checked for occupancy all the time when the
planner finds some idle time which mostly happens when the vehicle is following a path. This enables
the planner to take into account the cases where an occupied area is free again. In the case where
the graph search is performed to plan a global path, the occupied edges are ignored.

8. Communication Systems
Effective communication with deployed systems from a fixed human operator is a crucial component
of a complete robotic exploration system. While robots are capable of independent localization,
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Algorithm 3. PLANGLOBALLY(). Returns a path in PGV
∩ PGS or PGV in the order of preference.

1: PGV
← ∅, PGV S

← ∅

2: for pg
∈ PG do

3: if GV (pg ) ≥ v g
thresh and DS (pg ) ≥ sd

thresh then
4: PGV S

← PGV S
∪ {pg

}

5: else if GV (pg ) ≥ v g
thresh then

6: PGV
← PGV

∪ {pg
}

7: end if
8: end for
9: if PGV S is empty then

10: return path pg
∈ PGV with maximum DS (pg )

11: end if
12: pg

r ← path from PGV S leading to most recent frontier
13: pg

c ← path from PGV S leading to closest frontier
14: if PATHLENGTH(pg

r ) ≥ PATHLENGTH(pg
c ) then

15: return pg
c

16: else
17: return pg

r
18: end if

mapping, and artifact detection, the addition of a communication infrastructure is a force multiplier
to enable human supervisory control, interrobot coordination, and timely artifact reporting. We
developed a mesh network system to provide long-reach communications into underground environ-
ments which prioritizes reconnection times to maximize opportunities for data transfer.

8.1. Background
Previous work has developed several solutions to common problems encountered with deploying
mesh networks, such as discovery and optimal routing. A wide variety of both closed-source and
open-source solutions exist that include both hardware and software components. Mesh networking
can largely be subdivided into three layers: physical, logical, and transport. We will detail several
prominent open-source or commercially available options for each layer before describing our final
solution.

From a logical layer standpoint, meshing layers lay between the physical transmission of frames
over the medium and a higher-level protocol such as IP. For mobile robots operating in subterranean
environments, a responsive mesh layer that minimizes lost link time is a major requirement due to
the rapid movement of the robots. Further, to reduce integration effort, a mesh layer that operates at
layer 2 of an OSI stack (for Standardization, 1996) is desirable to allow transparent use of higher-level
protocols such as ARP and IP. Typically, meshing algorithms such as OLSR (Clausen et al., 2003)
and AODV (Perkins et al., 2003) select a single best path for routing between nodes which hinders
algorithmic performance in dynamic environments. A more recent example of a single-path logical
meshing layer is Better Approach to Mobile Ad-hoc Networking-Advanced (batman-adv) (Seither
et al., 2011), an open source implementation of a layer 2 mesh. In contrast to batman-adv, meshmerize
(Pandi et al., 2019) provides multiple paths between nodes to ensure a reliable connection while still
operating at layer 2; these multiple paths allow for a dramatic decrease in reconnect times when
mesh topology changes. We relied on meshmerize as our layer 2 meshing solution in cooperation
with Meshmerize GmBH.

Only transport layers designed for ROS were considered for ease of integration with the rest of
the autonomy stack. In a traditional networked ROS architecture, a single computer runs a main
node known as the rosmaster that coordinates the publish-subscribe mechanisms. When a node
wishes to exchange data with another node via named topics, the master is consulted to determine
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Figure 13. Several different types of ROS architectures. Red lines indicate data transfer, black lines indicate
directory management, and blue lines are data paths that cross network segments. A basic, single-master ROS
network node graph is shown in (a). A fkie_multimaster multimaster ROS network node graph is shown in (b).
In contrast to both (a) and (b), (c) shows how udp_mesh creates a single virtual channel between nodes, shown
in green, to implement data prioritization.

the computer to connect to, as in Figure 13a. A single rosmaster serves as a central directory of
nodes and topics; when a subscription to a topic is requested, a list of publisher nodes is returned so
that point-to-point TCP connections can be made directly between publisher and subscriber. These
direct TCP connections break down when systems are linked over unreliable mesh networks which
necessitates the need for an alternative transport mechanism.

One open source transport layer multimaster_fkie (Juan and Cotarelo, 2015) solves the discovery
and advertisement problems using multicast packets and specialized nodes on each machine with an
architecture shown in Figure 13b. However multimaster_fkie does nothing to establish prioritization
of data flow. With the standard TCP transport provided by ROS, there is no centralized means of
monitoring internode connections to arbitrate data priorities. Prioritization is crucial for monitoring
the robot fleet in intermittent communication situations. Mission critical data such as artifacts needs
to make it through to the human supervisor before other auxiliary data such as odometry and maps.

One alternative to multimaster_fkie, Pound1 (Tardioli et al., 2019), is specifically designed for
use in unreliable mesh networks and implements many of the desired requirements. However, Pound
relies on hardcoded topic names and fixed addressing information, which limit the flexibility of the
system. Alternatively, nimbro_network (Schwarz et al., 2016) implements a similar set of functions
with regards to transport over wireless networks, but omits prioritization. Crucially, nimbro_network
still utilizes TCP for reliable interrobot communication, preventing adaptation of core TCP behavior
(particularly retransmits) to unreliable mesh networks; UDP links are only used for nonguaranteed
data delivery.

8.2. UDP Mesh
The main innovation in our system is our transport layer, udp_mesh which allows for runtime
reconfiguration, implements prioritization, and re-implements reliable communication over UDP to
allow for more refined control over retransmits and fragmentation. Fundamentally, the udp_mesh
layer uses only unicast and broadcast UDP datagrams to implement higher-level services without
requiring multicast support. In principle, multicasting would offer a performance benefit by reducing
broadcast traffic. However, in a wireless mesh environment, these potential gains are offset by
multicast group membership management overhead.

8.2.1. Discovery and Address Resolution
Discovery is the process of identifying nodes that are available for communication. We implement
discovery through the use of a periodic heartbeat broadcast that advertises the node’s availability
and provides name resolution information. In concept, this service is similar to the mcast_dns service
in Linux, where peers advertise their naming information to be able to address nodes by hostname

1 https://github.com/dantard/unizar-pound-ros-pkg
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instead of layer 2 MAC or layer 3 IP address. Nodes identified through discovery are added to
the list of available nodes for communication as well as status reporting. This discovery heartbeat
is also used as a lost-communications detector to prevent higher-level messages from queueing for
unreachable nodes.

8.2.2. ROS Message Encapsulation
In the ROS ecosystem, messages are translated from a message definition language specification
into internal representations appropriate to the implementing language2. This same language
specification is used to serialize and deserialize messages; that is, to transform a ROS message
into a buffer of bytes suitable for transmission over an arbitrary channel. udp_mesh implements a
generic message passing system such that the message to be transmitted is never deserialized, saving
a significant amount of processing time in the case of complex, large message types such as images.
Instead, a generic subscriber is used to acquire the serialized bytes for direct use to be transmitted
to other nodes. On the receiver side, the transmitted byte stream is deserialized to instantiate the
message in a format that other ROS ecosystem nodes can readily consume. These two functions
abstract the transport of arbitrary messages over the udp_mesh layer and remove any requirement
to define a list of acceptable message types.

8.2.3. Point to Point Transport
In the udp_mesh system, point-to-point transport is implemented via UDP datagrams. This
envelope contains provisions for sequence tracking, fragmentation, and message reconstruction.
When preparing a message for transmission, the byte buffer provided by the ROS encapsulation
service is split into chunks that fit inside the underlying medium’s maximum transmit unit (MTU).
We use the standard 802.11 framing with an MTU size of 1500 bytes, out of which 100 bytes are
reserved for overhead, leaving 1400 bytes for payload.

In the implementation of our system, a configurable number of message fragments are permitted
to be “in flight” at any given time, similar to TCP congestion window control. In order for the
next fragment to be transmitted, the receiver must send an acknowledgment. During unit testing to
determine an appropriate value for the number of in-flight fragments permitted, an initial increase
yields improved throughput. However, after a certain point, throughput decreases as multiple packets
are queued for transmission on the medium and start to destructively interfere. As a compromise
determined via empirical testing, three packets are permitted to be in-flight between any two nodes
at a time. With this configuration, our transport-layer throughput is approximately 20 Mbit/s of
payload data, measured using raw images as representative high-density traffic over a wired gigabit
Ethernet link.

Retransmits are automatically queued until either an acknowledgment is received or the host is
marked offline due to nonreception of any heartbeat or acknowledgment messages. Once a host is
marked offline, any attempts to send messages are discarded. Hosts may become online once again
after receipt of a discovery message. On the receiver side, the message is kept in a temporary state
while the fragments arrive. Should message fragments stop arriving, the partial message is purged
after a timeout and the host is once again marked offline which indicates to higher levels that reliable
transport is unavailable. In this case, the higher level is BOBCAT, which is discussed in Section 9.

8.2.4. Quality of Service
Quality of Service (QoS) is the notion that some traffic should be prioritized over other traffic for
use of a limited communications channel, e.g., artifact reports need to arrive before mapping data.
Fundamentally, TCPROS (the default transport used in ROS v1) is not capable of implementing
a QoS scheme where a limited channel is shared between different topics (Figure 13c), as every
node subscribing to a topic uses an individual TCP point-to-point link with no information about

2 http://wiki.ros.org/msg
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Table 2. Evolution of Team MARBLE’s communication system. As a note, ath9k and
meshmerize are commercially available, B.A.T.M.A.N. and fkie_multimaster are open-source
software, and upd_mesh, marble_multi_agent, and BOBCAT are custom packages developed
for the SubT Challenge.
Event Physical Data Link Transport Application
Tunnel ath9k B.A.T.M.A.N. fkie_multimaster marble_multi_agent
Urban ath9k meshmerize fkie_multimaster marble_multi_agent
Final ath9k meshmerize udp_mesh BOBCAT

other links. This need to prioritize traffic was the driving rationale behind the development of the
udp_mesh layer. As part of the configuration of the layer, each topic to be transported includes a
priority number. Internally, this priority number is used as a sorting key to order message fragments
for transmission.

8.2.5. Point-to-Multipoint Transport
Although udp_mesh is based around point-to-point message transfer, mission requirements some-
times necessitate system-wide messaging. For example, broadcast methods are used within the
udp_mesh layer to manage name resolution. To facilitate these type of messages originated at
higher levels, a broadcast mechanism is provided by the transport layer. For messages that fit
within a single MTU, a single, unacknowledged UDP broadcast is used to distribute the message.
For larger messages, individual links to each node are used to send the broadcast as a series of unicast
fragments using the same accounting and acknowledgments as the point-to-point mechanism.

8.3. Final Solution
The final communication solution used meshmerize as the logical layer with udp_mesh as the
transport layer. Both robots and beacons acted as nodes in the mesh with robots carrying 1W radios
and beacons carrying 2W radios. Beacon drops are controlled by the methodology described in Sec-
tion 9.3. Table 2 shows the evolution of our final networking solution from the Tunnel Circuit Event
through the Final Event. Our meshing solution, including the meshmerize layer 2 software stack, was
implemented on ath9k-compatible 802.11 hardware, while udp_mesh was implemented on high-level
compute units. Because of this split and radio hardware commonality, all of our radios ran essentially
the same firmware image built off of an OpenWRT3 base. Our beacons only participated in the mesh
at layer 2, and as such did not contribute to any broadcast traffic associated with udp_mesh services.
By providing a reliable ROS-compatible mesh networking layer, higher-level autonomy and human
interface via BOBCAT could be provisioned without knowledge of the underlying infrastructure.

9. Mission Management
While the combination of Team MARBLE’s large scale positioning system, mapping, and planning
solutions provide a solid foundation for autonomy, higher level cognition and reasoning is required
to take full advantage of the system. For Team MARBLE, this higher level reasoning consists of
a flexible mission management solution which keeps the robots on task and allows for higher level
instructions from a human supervisor. The core of the mission management solution is Behaviors,
Objectives and Binary States for Coordinated Autonomous Tasks (BOBCAT) (Riley and Frew,
2021). BOBCAT controls the decision-making process for each individual agent while a separate
process known as Multiagent Data Collaboration for Autonomous Teams (MADCAT) controls the
data sharing and waypoint deconfliction between robots. In this section we highlight the design
decisions, and algorithm details behind BOBCAT and MADCAT.

3 http://www.openwrt.org
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9.1. BOBCAT
BOBCAT simplifies the robot and environment states using Monitors such as communication
status. The Monitors are combined with weighted goals which are called Objectives such as finding
artifacts or extending communications. BOBCAT then selects the best Behavior such as exploring or
deploying a beacon to fulfill and the most important Objectives to execute. A full list of implemented
Monitors, Objectives, and Behaviors can be seen in Section 13.7 of the Appendix.

Formally, a BOBCAT is defined by the tuple {x,y,w,M,O,B, πB} where

• x ∈ X is the system state with state space X.
• y ∈ Y are the sensor measurements with measurement space Y .
• w ∈W = R|O|+ is a vector of input weights. These weights are used by the respective Objective

functions and represent the relative importance of the Objective to the overall mission
• M is the set of Monitor functions of the form Mi : X×Y → {0, 1} ∀Mi ∈M . Monitor functions
Mi return a binary value based on the robot state and measurements.

• O is the set of Objective functions of the form Oj : W ×{0, 1}|M | → {0,Wj} ∀Oj ∈ O. Objective
functions Oj use the input weight Wj and a logical combination of Monitor outputs to return
either the input weight or a 0, which indicates the current preference of the objective to be
fulfilled.

• B is the set of Behavior functions of the form Bk : {0, 1}|M |×{0,Wj}|O| → R≥0×Fk ∀Bk ∈ B.
Behavior functions Bk sum the outputs of the Objectives associated to that Behavior. Monitor
outputs may be used to selectively inhibit specific Objective weights during evaluation steps.
The Behavior function returns a real value that indicates the current utility score of the actions
associated with that Behavior, and a pointer to an execution function. A Behavior may have
a null execution function.

• πB is the policy for selecting the Execution Behavior BE based on each of the Behavior utility
scores.

BOBCAT can be represented graphically as in Figure 14. States and measurements from both the
robot itself and external agents in a multiagent scenario feed the various Monitors. This represents
what the robot “knows”, and provides a binary output to the rest of the system. The Monitor

Figure 14. Graphical overview of BOBCAT. Numbers represent binary outputs, output weights, and behavior
scores, respectively. A full list of monitors, objectives and behaviors is provided in the Appendix in Tables 8, 9,
and 10, respectively.
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Figure 15. Overview of the Multiagent Data Collaboration for Autonomous Teams (MADCAT ) framework.

output lines in Figure 14 and other figures represent the cases where the Monitor is associated with
the respective Objective or Behavior.

9.2. MADCAT
The MADCAT framework depicted in Figure 15 provides the multiagent data sharing capabilities
required for the mission. The framework includes transmission of relevant coordination data and
maps, as well as map merging functionality and decision making for each agent. MADCAT uses
BOBCAT to accomplish the high-level mission management for individual agents with additional
higher-level direction provided by the human supervisor.

9.2.1. Messages
MADCAT sends most messages by broadcast with no acknowledgement required, and therefore does
not require the sender to needlessly wait. This allows any agent who receives the message to act
accordingly without a requirement to respond. This is helpful in the event the sender leaves commu-
nications range shortly after the broadcast. An exception to this policy is made for high bandwidth
data such as maps and images, because the receiver can not act on incomplete data. Bandwidth is
not strictly managed, but instead uses a “best-available” strategy consistent with the prioritizations
assigned to differing message classes, e.g., telemetry, supervisor commands, maps, and FPV.

An agent’s pertinent local messages are concatenated into a single message in order to limit
the number of messages broadcast over the communications channels. Messages are re-built and
broadcast every second. Only the most recent message is needed for time-varying data such as
odometry or the current goalpoint and any older messages are discareded. Other data such as
artifact reports and relay locations are appended to a growing list, so any message a remote agent
received has all of this type of data. Larger data that could grow to become impractical to transmit
repeatedly, such as maps and images, use a point-to-point handshake transmission. Messages are
deconflicted using sequence numbers, to allow agents to share the messages of other agents but
ensure only the latest data is used by the receiver.
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Each agent’s broadcast message contains not only its own local data, but that of any neighbor
agents as well. This allows downstream agents who can communicate with agent A but not agent
B to still receive relatively current information from agent B.

9.2.2. Artifact Report Management
Agents keep track of both their own detected artifacts using the procedure described in Section 5
as well any artifacts they have received from other agents. The framework aggregates all of the
artifact reports and the Artifact monitor determines if the agent needs to return to communications
to report the new information to the base station. The base station further parses these messages for
display, selection, and transmission to the scoring system. More details of this display can be found
in Section 9.5. Images are sent using a point-to-point request system over a low priority channel to
reduce bandwidth requirements.

The BOBCAT Artifact monitor which is triggered by 3 unreported artifacts or 5 minutes
of exploration with a pending artifact, ultimately determines whether the robot should return
to communications for unreported artifacts. The raw artifact reports are always used in this
determination, but transmission of images is configurable. By default, and as configured during the
Final Event Prize Run, artifact images not received by the base station are considered unreported
artifacts, and will force the robot to return to communications until they are fully transmitted.

9.3. Beacon Deployment
The framework is responsible for identifying locations to deploy communications relays to extend
the communications reach into the environment. It uses a combination of communications status,
distance and turn detection to identify potential locations. The human supervisor is also able to
command drops based on a robot’s location on the map.

9.4. Goal Selection
Some behaviors, particularly Explore, require a goal selection step once that behavior has been
chosen to execute. The goals either come from the global planner described in Section 7 or from
human supervisor input. If two agents goals are found to be conflicting, BOBCAT requests a new
goal from the planner which provides a path to the next closet goal point.

9.5. Human Supervisor Interface
The human supervisor interacts with BOBCAT using a custom GUI shown in Figure 16. This
interface allows the human supervisor to set a goal point for the robot using an Interactive Marker.

Figure 16. Example of the human supervisor interface showing the end of Team MARBLE’s Prize Run at the
Final Event.

Field Robotics, January, 2023 · 3:125–189



Flexible supervised autonomy for exploration in subterranean environments · 153

MADCAT then passes this goal to the robot through the communications network if a connection
is available. The human supervisor can also remotely control robots using an Xbox controller when
communication systems allow.

First-person view (FPV) allows the human supervisor to see the environment from the robot’s
perspective in semireal time, instead of just through the map representation and infrequent artifact
images. In addition to increased situational awareness it allows the human supervisor to identify
visual artifacts that may be missed by the on-board artifact detection system, or identify them
more rapidly. Finally, FPV helps the human supervisor during manual teleoperation in the event it
is needed to direct the robot.

Flexibility of our udp_mesh communication architecture made it possible to rapidly adapt
to mission specific constraints. During the Final Event, we observed extra bandwidth in the
communication system and decided to add FPV to our Spot robots to enhance their exploration
potential. Compressed images from the Spot forward facing cameras were transmitted as 1 Hz
low-priority messages. On the base station computer, these images were displayed live in RViz, and
saved locally so the human supervisor can review that at any time. The additional scoring potential
of FPV is highlighted in Section 10.4.

Several features of the human supervisor GUI were designed to help reduce operator workload.
First, another artifact fusion process runs on the Base Station computer, to aid the operator in
tracking artifacts reported by multiple vehicles. If reports of the same type are within 3 m of prior
reports, they are fused to the mean position. Redundant artifact reports that have already been seen
by another robot appear in a light gray color. In contrast, new reports flash with large white text to
bring attention to the human supervisor. When submitting artifact reports, the human supervisor
can select from individual or fused reports. If an artifact is successfully scored, the submission
is locked out to prevent resubmitting. If it does not result in a score, the operator can utilize
additional map, trajectory, and FPV information to improve the estimated position. New reports
can be submitted by shifting fused artifacts icons in the map or specifying a manual position.

10. Final Event Results
The SubT Final Event Prize Run on September 23, 2021 provided Team MARBLE an excellent
opportunity to evaluate the performance of our complete supervised autonomy solution, and we
share our results in this section. First, an overview is provided in Section 10.1, which includes
an outline of the mission objectives, a description of the previously unknown course, as well as a
high-level summary of the results. Localization and mapping results are presented in Section 10.2.
Further analysis of the planner and resulting exploration effort is described in Section 10.3. Artifact
detection results are thoroughly analyzed in Section 10.4. The communication environment was
friendlier than expected, and in Section 10.5, we discuss how we capitalized on that opportunity.
Mission management results are detailed in Section 10.6, including the five instances where
the human supervisor manually intervened, as well as the seven artifacts that were scored via
FPV imagery. Together, this section elucidates how our systems worked together to score 18
artifacts, while also discussing the areas that limited even higher performance. Data from Team
MARBLE’s deployment during the Final Event Prize Run is publicly available and discussed in
Section 10.7.

10.1. Overview
The mission objectives were to accurately report as many of the 40 artifacts in the course as possible
during the mission. There are three hard constraints: the mission is 60 minutes long, there are a
total of 40 attempts to report artifacts, and only one human, the human supervisor, is permitted
to supervise the mission, manipulate robotic agents, and submit artifact reports.

The final course was custom constructed as illustrated in Figure 17, which breaks the course
out into distinct tunnel, urban, and cave environments. The course contains numerous hazards
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Figure 17. Course map of the 60-minute Final Event Prize Run designed by DARPA, highlighting the 18 of 40
artifacts scored by Team MARBLE, along with the areas of the tunnel, urban, and cave sections were explored
by agents.

and challenges: rough terrain, railroad tracks, slippery surfaces, ramps, stairs, large drop-offs, rocky
cliffs, narrow hallways, low-to-the-ground corridors, wide-open caverns, fog, standing water, dynamic
obstacles, trap doors, and a degraded communications environment. These challenges are discussed
further in Section 10.3.

Here, we provide a brief high-level summary of the artifacts scored and the extent of the
environment explored. Team MARBLE scored 18 of the 40 artifacts and explored roughly half
of the environment. For reference, the top-scoring team scored 23 artifacts, and the performance
for all teams is listed in Section 13.9 of the Appendix. The location and class of all 40 artifacts can
be visualized in the context of the course map shown in Figure 17. This map also indicates which
regions of the course that Team MARBLE explored as well as the 18 scored artifacts. The artifacts
that Team MARBLE scored are also listed in Table 3, ordered chronologically from mission start to
mission end. Each of the 18 artifacts in Table 3 correspond by ID to the scored artifacts in Figure 17.
Further analysis of artifact detection results are detailed in Section 10.4.

10.2. Localization and Mapping
A secondary objective of the 60-minute Final Event Prize Run was to rapidly map the environment
and transmit the real-time map back to DARPA every ten seconds. The map takes the form of a point
cloud, or a collection of three-dimensional points that represent occupied space in the environment,
e.g., floors, walls, ceilings. Figure 18 provides a comparison of the DARPA-generated ground truth
map in black against the final map submitted by Team MARBLE, split into inliers in green and
outliers in red.

DARPA has generously collected, processed, and shared this map data with participating teams
(Schang et al., 2021). Inliers are defined as points within 1m of ground truth map points, and outliers
are defined as points outside 1m. Map coverage is a metric representing the ratio of the environment
explored, and is defined as

map coverage = ground truth points within 1m of an inlier point
total ground truth points . (9)
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Table 3. List of all artifacts scored by Team MARBLE during the 60-minute Final
Event Prize Run, along with the corresponding mission time when artifacts were
reported and scored, artifact type, unique DARPA-assigned ID numbers, and Euclidean
distance error between the reported and ground truth location of the artifact.
Score Time [mm:ss] Type ID Error [m]
1 01:08 Drill L51 0.57
2 01:23 Backpack L53 2.23
3 06:23 Rope L55 0.84
4 12:03 Survivor L26 0.62
5 16:35 Survivor L32 1.40
6 17:23 Gas L08 1.80
7 28:08 Fire Extinguisher L31 1.31
8 35:51 Drill L34 1.43
9 36:53 Fire Extinguisher L38 2.82
10 37:08 Cube L36 3.94
11 37:58 Backpack L40 1.40
12 38:47 Rope L67 2.87
13 47:53 Cube L11 1.83
14 50:33 Cell Phone L22 4.06
15 50:45 Cell Phone L47 4.00
16 51:48 Cell Phone L59 2.15
17 52:45 Gas L24 2.55
18 56:33 Helmet L58 1.74

Inliers

Outliers

Ground Truth

250 50

meters

Figure 18. Final point cloud map submitted by Team MARBLE to DARPA staff during the Final Event Prize Run.

Map error or deviation is a metric representing the ratio of the submitted map that is inaccurate
relative to the ground truth map, and is defined as

map deviation = outlier points
total submitted points . (10)

Figure 19 shows that map coverage steadily increases throughout the mission, with some periods
of rapid exploration, and by the end of the mission, nearly 50% of the environment has been mapped.
Map error on the other hand, increases modestly throughout the mission due to localization drift.
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Figure 19. Map coverage, error, and cumulative score throughout Team MARBLE’s deployment during the
DARPA SubT Final Event Prize Run.

(a) (b)

(c) (d)

Figure 20. The final maps built onboard (a) D01, (b) H01, (c) D02, and (d) H02 at the DARPA SubT Final
Event Prize Run.

However, it increases significantly due to a localization failure on D01, which is discussed further
in Section 10.3.4. This failure generated erroneous sections of map, which appear as a long winding
corridor in Figure 18 and Figure 20.

10.3. Planning
During the entire 60-minute mission and across a diversity of environments, none of the robots
were teleoperated due to a planner failure or to improve the volumetric gain, which is seen as
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Figure 21. The figure shows three snapshots from the SubT Final Event Prize Round run. The blue lines in the
figure represents the locally sampled RRT∗ tree and the green lines represent the global graph. (a) The robot
can be seen to avoid sampling over the negative obstacles i.e., the edge of the subway platform, owing to the
settling-based collision checks. (b) The agent planned away from the position history of a teammate robot that
was launched before it, demonstrating effective multiagent coordination. (c) This snapshot shows an instance
where teleoperation was initialized on one of the robots. The robot can be seen to plan a path that had sufficient
volumetric gain leading the robot toward a frontier in the urban area that had not been seen by any other robots.
However, the human supervisor decided to teleoperate the robot through the initial section of the tunnel area
and then let it autonomously explore the tunnel.
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Figure 22. Volumetric gain explored by each robot across the 60-minute Final Event Prize Run. Planner-Off,
denoted by blue lines, represents instances when the planner was paused to allow the autonomous mission-
management system to take over when robots are in close proximity, as well as the several interventions when
the human supervisor manually teleoperated robots. Go-Home, denoted by black lines, represents instances when
the planner began returning home to reconnect to the network and report new artifact reports and map data.

a successful demonstration of the planning reliability and flexibility. The human supervisor only
intervened to complement autonomy with human-level cognition and intelligence, as discussed
further in Section 10.6.

As an overview, Figure 21 presents three scenarios from the Final Event Prize Run, which
demonstrate negative obstacle avoidance, multiagent coordination based on teammate position
histories, and teleoperation initiation by the human supervisor. Below, Section 10.3.1 highlights the
exploration performance, Section 10.3.2 shares examples of agents avoiding treacherous terrain, and
Section 10.3.3 demonstrates the planner adapting to dynamic changes in the environment. Section
10.3.4 discusses system limitations that prevented the agents from exploring the entire course.

10.3.1. Exploration
The volume of unseen area explored by each agent across the mission is illustrated in Figure 22.
Unlike the statistics of the global map submitted to DARPA in Figure 18, Figure 22 presents
agent-specific exploration information stored onboard each robot. D02 was the largest contributor
to overall exploration, partly because it was launched first and had the most time to explore.
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D01 played a complementary role by exploring most of the tunnel environment, which remained
unexplored by D02. Because the subset of the environment safely traversable by the wheel robots
was relatively more constrained, it naturally led to less exploration from the Huskies across the
mission.

Besides showing the volume explored by each of the robots, Figure 22 also shows time periods
during which the default planner exploration behavior was paused for higher-level mission man-
agement and teleoperation commands. These interjections by the autonomous mission management
system were primarily triggered when agents approached each other, and resulted in lower-priority
agents pausing and higher-priority agents resuming their task. During these encounters, agents
appear as fast-approaching dynamic objects, and this simple procedure was employed rather than
incorporating reactive obstacle avoidance into the planner.

10.3.2. Treacherous Terrain
The path planning solution successfully kept each agent safe from collision throughout the entire
mission. The Spot robots, which explored more challenging features in the environment, fully avoided
negative obstacles, such as shear drop-offs and rocky slopes, and traversed up and down stairs.

The Spot robots successfully traversed up and down the small set of stairs leading up to the
subway platform, as shown in Figure 23. However, when stairs were first encountered from above,
agents did not plan down them due to the limited ±16.6◦ vertical field of view of onboard Ouster
OS-1-64 lidar sensors, as shown in Figure 24a. In addition, the Spots can only safely walk down stairs
backwards, and therefore additional logic would be be required to autonomously traverse those stairs.

(a) (b)

Figure 23. Instance of (a) D01 planning up stairs with the green edges of the graph, pink planned path, and
associated semantic map with blue voxels representing stairs, along with (b) FPV imagery.

(a) (b)

Figure 24. Instance of (a) D02 thoroughly exploring the subway platform without planning over the edge, with
green edges of the graph, pink planned path, and associated map, along with (b) FPV imagery.
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(a) (b)

Figure 25. Instance of (a) D02 autonomously exploring the entire cavern, traversing the safer surfaces and
avoiding treacherous areas, such as the one shown in (b).

(a) (b) (c) (d)

Figure 26. Early in the mission, D01 walked by the corridor with the trap door, as shown by (b) the left camera
(1:47). The agent later to returns to the corridor, (a) walks under the trap door (10:34), and soon after sees it
has closed, as shown by (d) the right camera (11:01). After seeing the trap door close, (c) the updated map and
graph show (red) edges as untraversable (11:11). Had the agent moved closer to the trap door, and fully been
within mapping range, all edges would have updated as untraversable.

Both Spot robots thoroughly explored the subway platform, approaching the edge, but never
stepping and falling over, as demonstrated by D02 in Figure 24. Additionally, the same Spot robot,
D02, explored the entire cavern autonomously without entering treacherous terrain, as shown in
Figure 25.

10.3.3. Dynamic Environment
The planner has the ability to adapt to dynamic environments, such as closing or opening of doors,
falling rubble, as well as other situations also lead to dynamic changes in the map, including other
nearby mobile agents, and localization and mapping error.

During the Final Event Prize Run, D01 traveled through a side branch of the urban environment,
triggering a trap door. Figure 26 shows the planner adapting to the dynamic environment by re-
assigning previously traversable edges as untraversable.

In addition, there were several instances of temporary localization and mapping error, which
caused erroneous new map data to change previously traversable edges of the planning graph to
untraversable. In each case, the planner adapted to the new scenario, and continuously operated
throughout the localization drift and loop closure correction. An example of this is included in
Section 13.10 of the Appendix.

When agents pass each other, they appear as fast-moving dynamic obstacles, and cannot re-plan
around one another fast enough. Therefore, an agent-based prioritization scheme prevents both
collision and deadlock, by enforcing one agent to wait while the other passes. Examples can be
found in Section 13.10 of the Appendix.

10.3.4. Limitations
However, several limitations did prevent agents from exploring roughly half of the course. In total,
there were three types of bottlenecks: constrained corridors, slippery surfaces, and downward sets of
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stairs, each exposing unique limitations within the autonomy system. None of these are limitations
of the planner itself, but rather limitations of mapping, mobility, and perception.

The planner did not plan through all constrained spaces because the selected planning parameters
for agent width and height did not allow the graph to propagate through especially short and narrow
spaces. These parameters were intentionally chosen to be conservative to prevent the agent from
moving along an unsafe trajectory. Utilizing a higher-resolution local map and planner could result in
a more agile robot that could safely traverse those spaces. Additionally, autonomously transitioning
into a crouching gait could improve the Spots ability to traverse spaces with low ceilings. Examples
are included in Section 13.11 of the Appendix.

The second limitation is slippery surfaces, and led to D01 slipping and falling in the cave section.
Some of these rocky surfaces were intentionally designed to be slippery, and plenty of humans
walking through the course after the event also slipped and fell. After D01 fell, it also experienced a
localization failure. Methods to recovery the system from an event such as this one would involve im-
plementing a fall detection algorithm, as well as autonomous self-righting and localization reset logic.

10.4. Artifact Detection
In this section, we present performance results of the artifact detection and reporting system. During
the 60-minute Final Event Prize Run, Team MARBLE scored a total of 18 artifacts out of the 40
artifacts in the environment. Figure 27 presents a flow diagram that summarizes how our team
scored 18 artifacts and the limitations that resulted in the remaining 22 from being scored. Of
all 40 artifacts, our agents explored enough of the environment that they were in the vicinity of 25
artifacts, leaving 15 unexplored due to mobility challenges discussed in Section 10.3. Team MARBLE
reported 19 of the 25 artifacts that were explored, and successfully scored 18 of those 19 reported.
A map of the area explored and scored artifacts is shown in Figure 28. Details of these 25 explored
artifacts, of which 18 were scored, one was missed, and six were unreported, are shared in Section
13.13 of the Appendix.

Of the 18 artifacts that Team MARBLE successfully scored, 11 were scored by autonomous robot
reports, two were scored by the human supervisor modifying the position of autonomous reports,
and five were scored by the human supervisor via robot FPV imagery. One artifact was reported
but did not score due to localization error in excess of 5m. There were six artifacts that agents saw,
but did not report due to errors in the autonomous artifact detection system. The human supervisor
received information regarding three of these six artifacts but missed them due to high workload
demands during the mission. The other three artifacts were located in areas that prevented agents
from communicating back to the human supervisor.

Figure 27. Flow diagram illustrating how Team MARBLE scored 18 of the 40 artifacts in the course, and the
limitations preventing the remaining 22 artifacts from being scored.
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Table 4. Artifact statistics for Team MARBLE during the Final Event Prize Run. A total of 18
artifacts were scored. Only one artifact was reported but not scored, which was due to localization
error greater than 5m. Agents were in the vicinity of six artifacts, but they went unreported due
to autonomous artifact detection failure and in some cases, also missed by the human supervisor
due to excess workload. The remaining 15 unexplored artifacts were never seen by agents because
they were located in parts of the course that were never reached.
Artifact Type Scored Not Scored Unreported Unexplored Total
Survivor 2 0 0 1 3
Cell Phone 3 0 0 1 4
Backpack 2 0 0 3 5
Drill 2 0 0 2 4
Fire Extinguisher 2 0 1 1 4
Gas 2 0 1 0 3
Vent 0 0 3 1 4
Helmet 1 0 1 3 5
Rope 2 0 0 3 5
Cube 2 1 0 0 3
Total 18 1 6 15 40

Figure 28. Locations of ground truth artifacts in white, reports that scored in green, and reports that did not
score in red, overlaid on ground truth map of the course.

10.4.1. Visual Detection
The focus of this section is to quantify the performance of the visual artifact detection system. Of
the 18 artifacts that Team MARBLE scored, 11 of them were visual artifacts, as shown by Table 4.
First, we focus on the six artifacts (L51, L53, L26, L34, L40, L67) that were successfully reported
by the agents’ autonomous artifact detection systems in the course. All six artifacts were accurately
localized to within 5m. In fact, the largest error for a visual artifact was 2.87m (L67). This eliminated
the need for the human supervisor to spend time trying to correctly localize artifacts.
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Table 5. Artifact report statistics for Team MARBLE during the Final Event
Prize Run. A total of 34 reports, or attempts, were made throughout the
mission. A total of 18 attempts resulted in scores, 11 attempts were misses
and did not result in a score due to localization error greater than 5 m, and five
attempts were false attempts in that they were false positives and no artifact
of that class was in the vicinity.
Attempt Type Scored Missed False Total
Survivor 2 0 0 2
Cell Phone 3 5 0 8
Backpack 2 0 1 3
Drill 2 0 0 2
Fire Extinguisher 2 0 1 3
Gas 2 1 3 6
Vent 0 0 0 0
Helmet 1 0 0 1
Rope 2 0 0 2
Cube 2 5 0 7
Total 18 11 5 34

The autonomous artifact detection system filters raw frame-to-frame detections onboard the
agent, with the aim to reduce the number of false positive and redundant artifact reports. Because
the human supervisor has limited bandwidth, unnecessary distractions detract from the completing
other mission-related tasks. In the process of scoring these six visual artifacts, the human supervisor
had to process 21 artifact reports from the automated artifact detection systems onboard agents. Of
these, 11 were true positives, six were approved by the human supervisor and successfully reported,
and five were ignored because they were redundant reports that were previously scored. The other
10 reports were also ignored by the human supervisor because they were false positives.

In total, there were only four false reports that the human supervisor submitted. One was cause
by human error, the other three were caused by erroneous CO2 reports, as detailed in Section 13.16
of the Appendix.

Agents in the course failed to autonomously report the other five artifacts (L55, L32, L31,
L38, L58), but did transmit FPV imagery back to the human supervisor, who manually reported
and scored them. The fact that the autonomous artifact detection system did not detect five of
the 11 visual artifacts it saw, indicates that certain reliability limitations exist. Team MARBLE
acknowledged this limitation and relied on the human supervisor and FPV system to fill in that
void, which is further in Section 10.6.

10.4.2. Nonvisual Detection
Team MARBLE scored seven nonvisual artifacts, i.e., cell phone, cube, and gas, but as shown in
Table 5, required submitting more reports due to difficulty around accurately localizing the source.
The main limitation is that the detection scheme relies on threshold-based logic for RF and CO2
levels, and when triggered, simply reports the current location of the agent. The thresholds were
intentionally set low to increase the probability of detection when agents pass by the vicinity of these
nonvisual artifacts. Of the seven nonvisual artifacts scored, five of them (L08, L36, L22, L47, L24)
were scored via the autonomous robot reports, with an average error of 3.27m. The remaining two
artifacts (L11, L59) were scored by the human supervisor manually adjusting the reported artifact
locations.

10.5. Communications
The performance of the communication system was evaluated in the Final Event Prize Run using
both qualitative and quantitative measures. Subjectively, the human operator was able to employ
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Figure 29. Performance results of the communication systems, including (a) the map of the Team MARBLE’s
deployment during the Final Event Prize Run, overlaid with locations of robot connection (C) to the network
in blue-green, and locations of robot disconnection (D) from the network in red-magenta, as well as (b)
the distribution of intermessage arrival times for D01 with a nominal publishing rate of 1 Hz, overlaid with
N (1.00, 0.04). The highlighted red region represents the first σ value which contains 68% of the message times.

live FPV video from the robots, a capability that directly contributed to team’s third place finish.
The robots were in communication with the base station over the majority of the explored regions of
the course, as shown by the blue-green hues in Figure 29a, allowing the human supervisor to monitor
and intervene as needed. Overall, 125.2 MB of data was transferred through the communications
network, including all map segments, telemetry, artifact reports, and other data products. Of that,
FPV video comprised 51.6 MB. The latency of the mesh networking solution was evaluated using
intermessage arrival times of a heartbeat message sent from a long-ranging robot to the base station.
This mission management message, transmitted regularly from the robot, was part of our protocol
scheme and is analyzed as a message of convenience. A distribution of the intermessage arrival times
of these heartbeat messages from D01 to the base station is shown in Figure 29b.

Since these messages originate from the robot at 1 Hz, an ideal system would observe all
intermessage arrival times to be one second in duration. As our mission management system on
the robot does not run with hard realtime constraints, the 1 Hz publish rate is an estimate that
includes noise due to process load, etc. On the base station, there was an approximately normal
(N (1.00, 0.04)) distribution of arrival times. Since messages may experience delays, the immediately
following message may exhibit an intermessage time of less than one second, leading to the symmetry
apparent in Figure 29b. Our key observation of this plot is that the bulk of messages arrive within
five percent of their expected times across a distance of hundreds of meters and multiple mesh hops,
validating the performance of the entire mesh networking solution.

10.6. Mission Management
Overall, the mission management system was able to keep the robots on task with minimal human
supervisor intervention. However, when needed, the interventions were crucial towards both the
exploration capabilities of the system and the Final Event performance. Figure 30 presents a detailed
timeline of the four agents in the field, as well as the human supervisor. The four robot launches
and five robot interventions were the only times when the human supervisor used teleoperation.
There were only two other types of instructions agents received from the human supervisor. One
was commanding H02 to drop two communication beacons. The other was commanding D01 to
return home three times, each occurring while the human supervisor was also teloperating D01
through the fog.
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Table 6. List of the four robot launch (RL) sequences executed by the human supervisor
during the 60-minute Final Event Prize Run. Extensive process streamlining and repeated
practice deployments resulted in quick and repeatable launch sequences. The course entry
column represents the mission time at which the agent crossed into the course.

Duration Teleoperation Window Course Entry
Launch Agent [s] [mm:ss − mm:ss] [mm:ss]
RL1 D02 75 −00:37 − 00:38 00:02
RL2 D01 55 01:29 − 02:24 01:44
RL3 H02 35 07:15 − 07:50 07:25
RL4 H01 50 10:57 − 11:32 11:08

Mean 41

Figure 30. Mission management timeline for all robots and human supervisor during the 60-minute Final Event
Prize Run. When not manually teleoperating a robot, the human supervisor was monitoring the mission, which
includes watching live FPV streams from D01 and D02, reviewing incoming artifact reports from agents, reporting
artifacts to DARPA, and in the last five minutes of the mission, checking archived FPV images from the Spots
for previously missed artifacts.

10.6.1. Robot Launches
The human supervisor was under immense pressure to optimally balance many competing tasks
during the 60-minute Final Event Prize Run. With such limited time, the primary objective at
the beginning of the mission is to launch robots into the environment as fast as possible. Through
extensive practice and full-scale comprehensive field deployments, discussed further in Section 11.2,
Team MARBLE launched all four robots, with a mean launch time of 41 seconds, as shown in
Table 6.

Two agents experienced failures late in the mission, reducing overall fleet utilization rate from
92% to 73%. H02 experienced a hardware failure (36:48), and post-event inspection revealed better
vibration isolation of the computing system would reduce the likelihood of such a failure in the
future. D01 experienced a mobility failure (39:46), in which the Spot slipped on a slick rock and
fell over. The agent then experienced a localization instability due to the large induced velocity.
To recover from such an incident in the future, Team MARBLE could implement an autonomous
self-righting maneuver and localization reset logic.

Despite the fact that some artifacts were not detected and reported by the autonomous onboard
artifact detection system, the human supervisor filled in the void. The human supervisor reported
and scored five artifacts that were seen via robot FPV imagery, but not autonomously detected. Of
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Table 7. List of the five robot interventions (RI) executed by the human supervisor during the 60-minute Final
Event Prize Run. Our concept of operations relies on autonomous multiagent exploration, and does not necessitate
manual waypoints or teleoperation from the human supervisor. Therefore, agents were completely autonomous,
except for the human supervisor input during these five instances of teleoperation. The interventions goals varied,
but were all specific scenarios where human intervention would augment autonomous agent capabilities in a
mission-relevant manner.

Duration Window
Intervention Agent [s] [mm:ss] Goal Success Points
RI1 D02 240 03:02 - 07:02 Enter narrow cave corridor + 6
RI2 D01 598 21:54 - 31:52 Enter foggy tunnel area + 2
RI3 H02 24 35:04 - 35:28 Avoid course exit + 0
RI4 D02 200 39:24 - 42:44 Walk down stairs – 0
RI5 H01 21 49:40 - 50:01 Avoid course exit + 0

Mean 217 1.6

(a) (b)

Figure 31. Imagery during robot intervention 2 (RI2). when human supervisor was pushing D01 through the
foggy area in the tunnel environment, eventually leading to six additional points. Shown is a comparison of
(a) full-resolution FPV imagery onboard the agent and (b) compressed low-resolution FPV imagery transmitted
to the human supervisor.

these, the human supervisor saw four (L55, L32, L31, L38) from live FPV streams, while one (L58)
was found while reviewing archived FPV images near the end of the mission. More details of these
artifact reports are presented in Section 13.17 of the Appendix.

10.6.2. Robot Interventions
In total, the human supervisor intervened in the autonomous fleet five times during the 60-minute
mission. Table 7 presents the duration of each intervention, with a mean length of 217 seconds,
as well as the reason for intervening. Each of these interventions was in the form of manual
teleoperation, in which FPV streams were available at the base station, and velocity commands
from the human supervisor was transmitted to the remote agent in the field. Of the five manual
teleoperation interventions, only two had significant impact on the mission. The first (RI1) was
navigating D02 through the narrow cave corridor early in the mission (3:02 - 7:02), which led the
agent to the small cavern and two artifact scores. The second (RI2) was navigating D01 through
fog in the tunnel section midway through the mission (21:54 - 31:52), leading to six artifact scores.
Figure 31 provides a side-by-side comparison of the full-resolution FPV imagery processed onboard
by the autonomous artifact detection system and the compressed FPV imagery transmitted to the
human supervisor.

Two interventions (RI3, RI5) commanding agents back into the course, was out of a shear
abundance of caution. The planning algorithm is configured so that the staging area is treated
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as explored, so agents should not attempt to explore it. One intervention failed (RI4), in which
the human supervisor attempted to teleoperate D02 down the stairs by the subway platform. This
attempt failed because communication to and from the robot was intermittent.

The main takeaways from these results is that our agents are highly autonomous, leaving the
human supervisor to focus on mission monitoring and targeting strategic, high-value intervention
opportunities. The mission management system enabled convenient transition between autonomy
and manual operation, while the communication system enabled visibility and control over the
agents in the field.

10.7. Open-Source Data
During the final run at the Final Event, our team collected a significant amount of data related to
autonomous subterranean exploration in the form of ROS “rosbags”. Our datasets are split up by
agent, and each set contains a rosbag of the system inputs, mostly consisting of raw sensor data,
and another rosbag of the outputs used for visualization and performance monitoring. The complete
collection of data recorded at the Final Event can be found at https://doi.org/10.25810/a8ym-5z52.

11. Lessons Learned
Underground exploration of previously unknown environments, especially in a time and resource-
constrained search-and-rescue context, requires a highly adaptable human-robot team. The lessons
learned presented in the following sections enhance our proposed system’s flexibility across mobility,
communications, human-robot teaming, and multiagent coordination.

11.1. Platform Mobility
Systems with heterogeneous platforms allow for specialization by each platform for both specific
environments, and roles which benefit the entire mission. Specifically, in Team MARBLE’s case,
the addition of Spot platforms into an exploration role enabled rapid multistory expeditions. This
capability was further augmented with the utility of higher-payload, wheeled Huskies, carrying
communication beacons. When deployed, these beacons allowed the Spot platforms to report
artifacts without the need to traverse “home,” leading to much more efficient exploration. No single
platform is as performant as the combination of platforms operating in different roles based on each
one of their strengths.

11.2. Testing and Validation
Significant testing and validation was conducted for every element of the Team MARBLE system.
These tests taken over a variety of environments, shown in Figure 32, reduced mission-to-mission
variability, and increased system-wide adaptability. Through these tests, Team MARBLE locked in
well-tested solutions with minimal unexplained errors. This reduced changes on the system as we
approached the Final Event, given that new solutions had to be verified against similarly stringent
tests. To our knowledge our team made the fewest hardware and software based adjustments from
the two Preliminary Runs to the Prize Run to achieve our score, instead relying on our testing
having eliminated all significant errors outside of a so-called “Poisson distributed fatal error.” These
types of errors were mission ending to any individual robot but difficult to predict or adapt to in a
meaningful sense. These can be seen in our Prize Run where D01 fell over on rough steep terrain,
and where H02 suffered a hardware error.

A secondary goal of these full-scale deployments was to reduce human-based variability in perfor-
mance. They helped both the human supervisor and pit crew prepare for the stressors of operating
and responding quickly to complex interactions between robots, the environment, and potential
failure modes. At no point was a single test considered sufficient for validating a solution as sufficient;
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(a) (b) (c)

Figure 32. Team MARBLE conducted comprehensive field deployments at various sites including (a) the Edgar
Experimental Mine operated by Colorado School of Mines, located in Idaho Springs, CO. which tested terrain,
distance travelled, and communications; (b) the Engineering Center complex also located on University of Colorado
Boulder Main Campus which tested multistory navigation and repeated features from urban environments; and
(c) the Folsom Parking Garage located on University of Colorado Boulder Main Campus in Boulder, CO. which
tested planning in open spaces and vertical localization across multiple stories.

instead all solutions released demonstrated repeatability across the same and varied environments.
For reference, all full scale deployments are tabulated in Section 13.18 of the Appendix.

11.3. System Adaptability
The challenges posed by operating a system in an unknown environment necessitate a high level of
system adaptability. Predicting every capability that a system will need for a given mission, such
as search and rescue, is impractical. Instead, having a highly flexible system capable of adapting to
unknown situations is crucial. Having already addressed the mobility considerations in Section 11.1,
we also found software adaptability key to our success. For instance, the flexible communication
network enabled the ability to pass on FPV to the human supervisor with a simple configuration
change. While our system was designed with autonomy in mind and the capability was not previously
planned for, the adaptation proved invaluable. Minimal human supervision directly impacted the
final score and exploration capabilities of the system as a whole.

The notion of adaptability extends to other software architecture as well. The artifact detection
system was adjusted during the final competition to include SSID information for Bluetooth
artifacts. These artifacts could then be more accurately merged between agents and by the human
supervisor, despite inaccurate positioning from wireless signals.

In some cases, adaptability is explicitly accounted for in our design, most notably in the mission
management system. BOBCAT has many parameters which allowed the human supervisor to adjust
exploration activity, including how long a robot can explore before reporting detected artifacts,
whether a robot should find multiple artifacts before reporting, and how the system should adjust
to time constraints in the mission.

11.4. Autonomy and Human Robot Interaction
Team MARBLE emphasized autonomous system design as our primary goal. Since only one person,
the human supervisor, was permitted to interact with agents while they were deployed, having robots
controlling their own paths and decision making was key to reducing the cognitive load required to
manage mission objectives. Despite the focus on autonomy, the human supervisor is still necessary
to maximize system performance. As Team MARBLE approached the final competition, we found
targeted areas where direct human supervisor control improved results. This influenced decisions
regarding the number of deployed platforms, how artifacts were passed from agents to the human
supervisor, and how we recovered from anomalous robot behavior.

To maximize the human supervisor’s ability to track the data streams present across the fleet,
only four robots were deployed. While a larger fleet might have enabled a rapid exploration of
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the environment, it had potential to reduce the human supervisor’s ability to meaningfully address
problems arising from any specific robot.

The artifact detection system was designed to filter against false positives before passing
information to the human supervisor. Artifacts had to consistently detected in multiple frames,
and be a sufficient distance from existing artifact estimates. Where possible, artifacts were returned
with additional information including SSID for Bluetooth artifacts and images for visual artifacts.
This data allowed the human supervisor to sort remaining false positives quickly without being
distracting from the core mission objectives.

Specifically, the human supervisor spent most of their operational load solving problems the
robots were incapable of correcting through their autonomy stack. For example, during the Final
Event Prize Run, the human supervisor used the first person vision to navigate through dense fog,
which the robot was incapable of planning through autonomously. After this intervention, the human
supervisor allowed the robot to return to autonomous operations, where it explored several new
areas, and reported a total of six new artifacts. The human supervisor was able to opportunistically
intervene like this, only because the other agents were operating autonomously without supervision.

11.5. Retrospective
It’s important, after a three-year effort of this size and scope, to examine some of the bigger picture
questions. What would we do differently next time? What did we wish we knew at the start,
that we know now? The answer to the first two questions is that we would have spent more time
at the onset to scope out short-term and long-term development goals. We excelled at the Tunnel
Circuit Event, placing fourth amongst a large group of competitors. This was mostly due to meeting
well-scoped short-term goals within the one year cycle. However, during the six-month development
period for the Urban Circuit Event, we focused on long-term goals that we ultimately only partially
validated, leading to a disappointing performance. In hindsight, we should have focused on making
our already capable platforms more capable, rather than spreading our resources thin across many
thrusts. However, what our team excelled at after this experience, was pivoting and adopting two
new strategies. First, we leaned into student-led project management, which led to greater team
coordination, a key component of rapid and effective system development. Secondly, we focused on
long-term development goals, and given a year and a half, had the time to adequately develop, test,
and validate each subsystem, each fully autonomous robot, as well as our entire fleet in numerous
search and rescue missions. Together, these two powerful changes allowed a small, lean team, produce
a highly functional autonomy solution that could perform under pressure.

12. Conclusions
In this paper, we showcase our flexible autonomy solution for exploring unknown subterranean
environments. The highly performant autonomy solution directly lead to a third place finish at
the DARPA SubT Final Event which was focused on search and rescue. Moreover, the specific
innovations presented in graph planning, flexible communications, and mission management are
directly applicable to other multirobot teaming applications under limited human supervision.

Specifically, the combination of legged and wheeled robots allowed for heterogeneous teaming
enabling both rapid exploration and a robust communication network. The deployed mesh network
which is described in Section 8 enables flexible configuration and prioritization of data sent both to
other robots, and a human supervisor for review. A powerful graph planning framework, as described
in Section 7, paired with semantically encoded Octomaps enabled safe, rapid exploration. The final
system was able to explore a variety of underground environments, including gold mines and subway
stations, with minimal human input.

Human input was reserved for specific situations where higher-level reasoning had the potential
to improve the mission. The flexible mission management system described in Section 9 enables safe
transitions between human input and the underlying autonomy system. One of the most important
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lessons learned from the developed system is that focusing on autonomy is core for human robot
teaming. Robots need to be able to make decisions on their own, enabling the limited human resource
to only act in critical situations.
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13. Appendix
13.1. Communication Beacon Design
Each beacon consists of two 3D printed nylon-carbon fiber infused internal brackets serving as
structural support components. Figure 33a shows the top of each beacon that contains a charging
port, power button and LED power status indicator between the antennas. The two stabilizers seen
towards the front provide longitudinal stability for the beacon once deployed on the ground. These
complement the steel counterweights on the rear of the beacon. The deployment mechanism shown
in Figure 33b uses solenoids to hold the beacons in place. When the solenoid is released, the beacon
falls at a consistent rate using a constant force spring.

13.2. Platform Compute Design
When designing our system, we sought to balance the ease of development with a single, monolithic
compute unit versus potential integration challenges of a distributed system. Early on, we decided
that, given uncertain compute requirements, we should attempt to pack as much compute as possible
into the Husky platforms. This decision had a wide array of collateral consequences, including power
system requirements, cooling requirements, and mechanical considerations. Further, the decision to
not utilize an industrial-style motherboard, but rather a consumer gaming motherboard, created
integration difficulties that might have otherwise been avoided. For example, the power requirements
of our Ryzen Threadripper-based system were roughly 425 W at peak consumption of both CPU
and GPUs, at the limit of potential commercially available DC/DC ATX power supplies. Using
discrete GPUs mounted in PCI Express slots presented a mechanical challenge, particularly for
shock and vibration mounting, which was discovered as a failure mode late in the design process.
In contrast, the distributed architecture developed for our Spot platforms utilized significantly less
power and space while delivering similar performance. Future system designs are more likely to
follow a distributed approach, rather than a monolithic approach, to ease mechanical and electrical
integration efforts at the expense of only minimal added software effort.

At a deeper level of interrobot module communications, we underestimated the challenges of
differing ground potentials. After shorting out several serial links between components and having
unreliable USB communication, we realized that several ground loops were responsible. By adding
serial optocouplers and converting to Ethernet-based platform control, these ground loops were

(a) (b)

Figure 33. On the left (a) a perspective view of the beacon design as well as (b) a side view of the beacon
attached to the deployment mechanism.
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Figure 34. Block diagrams showing Precision Time Protocol (PTP) distribution between system components
on the Threadripper (a) and Xavier+NUC (b).

eliminated, resulting in highly reliable platforms. Future development would rely exclusively on
differential signalling such as controller-area network or Ethernet for intermodule communication.

13.3. Sensor Synchronization Design
To effectively share sensor data between robots, sensor and system timing has to be considered.
Our lidar solution could utilize IEEE 1588v2 timing (also known as the Precision Time Protocol
v2 or PTP), but our wireless mesh networking solution could not support IEEE-1588v2. Therefore,
we implement Network Time Protocol (NTP) between robots and PTP within the same robot.
On startup, each robot attempts to synchronize with the Base Station using NTP over the mesh
network. This synchronization step is critical for multi-robot operations and coordination to provide
a consistent time basis across all nodes. In testing, the relative time drift (a few milliseconds) over
the course of a run (1 hour) was not significant enough to cause problems. If the Base Station is
unreachable (say for single-robot testing), the robot falls back to its own battery-backed realtime
clock as a time source. In either case, after attempted synchronization, no further attempts are made
to match times with any other robot or the Base Station. In testing, we observed that clock slews
resulting from attempted time synchronizations as robots entered and left communications range
had a negative impact on localization performance.

In the Threadripper monolithic architecture used on the Husky platforms, PTP on the secondary
Ethernet interface functioned perfectly, allowing the Threadripper to become the grandmaster and
the lidar to follow along, as shown in Figure 34a. However, in the distributed Xavier+NUC architec-
ture (shown in Figure 34b), designing an effective PTP interface encountered significant challenges.

Fundamentally, PTP requires hardware support in order to function by performing sensitive
timing operations as close to transport medium as possible. The network hardware options on the
Spot included a Realtek r8125, an Nvidia platform SoC module, and a quad-port Intel i210 card.
Realtek r8125 support for PTP was not functional, as verified by the phc_ctl utility; this relatively
new chipset relies on an out-of-tree kernel driver for Linux at the time of our development. The
Nvidia platform module appeared to support PTP when interrogated by phc_ctl, but on further
investigation through network traffic inspection, the platform module was not inserting the correct
information into outbound Ethernet traffic. Our final solution is based on using a spare port on the
Intel i210 card, which had robust, verifiable PTP support. As the NUC lacks a port with viable PTP
support, we fall back on NTP as a synchronization method, relying on the Xavier as the robot’s
grandmaster time source.

As an aid to the community, we offer the following verification steps to assist in debugging PTP
issues. First, verify that there is hardware support via ethtool -T <iface> to verify kernel-level
hardware PTP support. Second, use phc_ctl <iface> cmp to verify that the Ethernet hardware
clock is synchronized to the Linux system clock. Finally, ensure that the hardware timestamps
encoded in the PTP network traffic match the local system by capturing network traffic from a
PTP-enabled grandmaster Ethernet interface. These steps can verify that the PTP software stack
is broadcasting the system time via the Ethernet hardware to downstream consumers.
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(a)
Imagery: @2022 Maxar Technologies, U.S. Geological Survey, USDA/FPAC/GEO, Map data @2022
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Figure 35. On the left (a) photo taken at CU South Campus of a Husky robot during a large-scale, long-duration
localization test. On the right (b), is an LIO-SAM point cloud map, denoted by small black dots, and LIO-SAM
robot trajectory denoted by larger dots colored by elevation, overlaid with Google Maps satellite imagery of the
area. The Husky was manually controlled, beginning in the CU South parking lot, continuing along a dirt path
and up a hill, looping back, and ending back at the parking lot.

13.4. Large-Scale Localization Validation
Validation testing of LIO-SAM onboard Spot and Husky platforms was imperative for ensuring
sufficient accuracy, speed, and stability for long-duration and large-scale missions. Some examples
include an outdoor test at CU South Campus, as shown in Figure 35, and as well as test that begins
at the CU Engineering Center building and treks across campus to the bottom of a three-story
underground parking garage, as shown in Figure 36.

13.5. Common Reference Frame Alignment Optimization
To further reduce the yaw error of the common reference frame alignment, the lateral spacing of
the robot prisms was increased.

In our initial testing, we found that the roughly 120-mm plates attached to the robots along with
the prisms 1.5-mm centering error lead to consistent variance in the resulting yaw of approximately
0.7◦. This aligned with a calculated value of arcsin(1.5/120) = 0.72◦. In order to reduce the impact
of this error, a mechanical bar holding two of the prisms at a distance of 655 mm, is added to
each robot. The resulting angle error after adding the bar was arcsin(1.5/655) = 0.13◦. This was
consistent with external testing. For a rough comparison see Figure 37a, where a test was conducted
using a mock robot plate and the prism separating bar. The difference from the average of each test
shows a higher precision for the tests conducted with the prism bar in place. An example setup for
these test is shown in Figure 37b.

13.6. Artifact Detection Training Procedure
A systematic procedure targeted at low-light conditions is used to train the model. At each location,
data was collected using three different brightness levels to minimize the impact of lighting conditions
on the model’s performance. Specifically, images were taken from past circuit events as well as
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Imagery @2022 CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA/FPAC/GEO, Map data @2022

Figure 36. Overlay of LIO-SAM point cloud map, denoted by small black dots, and LIO-SAM robot trajectory
denoted by larger dots colored by elevation, with Google Maps during a large-scale, long-duration localization
test at CU Main Campus. This test was conducted on a Spot robot, that was manually controlled, beginning in
the CU Engineering Center building on the bottom left corner of the map, continuing across campus, ending at
the bottom of the three-story underground Folsom Parking Garage on the top right corner of the map.
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Figure 37. A comparison of transforms generated by LTS using the standard robot sensor plate, and after
attaching prisms to a bar placed on the plate instead (a). The difference from the average, and precision of the
bar is higher than without the bar. Setup for a prism test with a mock gate highlighted in red (b). The mock
gate was designed to have the same dimension as a robot sensor plate.

separate field exercises. Remote data collection sessions took place inside the dark and rocky Edgar
Experimental Mine in Idaho Springs, Colorado. Local data collection took place on University
of Colorado Boulder campus, primarily within the outdoor courtyard of our Engineering Center
building, and during evening hours when there was no natural illumination. The data was collected
with three onboard illumination levels: 0%, 50%, and 100%. The cameras, FLIR Blackfly PGE-
05S2C-CS GigEVision cameras, were mounted in cardinal directions on the robots as shown in
Figure 5b.
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Table 8. MARBLE Monitors, with a description of robot state requirements for an output of 1.
Monitor Criteria
ExploreToGoal Received command to explore to a specific goalpoint, either submitted by the

human supervisor or generated by a node other than the global planner.
iExplore
iGoToGoal
iStop
iDeployBeacon
iGoHome

The associated input command has been sent by the human supervisor from the GUI
or joystick to execute a specific behavior.

NearbyRobot This and any other robot’s paths are within 2m of each other.
Beacon A communications beacon is available and other criteria has been met to deploy it.
ReverseDrop A communications beacon is available and communications have been lost with the

base station for 10 seconds.
Comms Any message has been received from the base station in the last 3 seconds.
Artifact There are at least 3 unreported artifacts, or it has been at least 5 minutes since the

first unreported artifact was detected.

Table 9. MARBLE Objectives. Evaluation functions calculate the weight for each objective. Components prefixed
by “iw” represent the input weight of the objective, while monitor names represent the binary output of the monitor.
Objective Evaluation Function Description
FindArtifacts iwF indArt if act s Find, identify and localize artifacts. Always active.
Input iwInput ∗ OR(Input Monitors) Allow supervisor to override autonomy when necessary.
BeSafe iwBeSaf e ∗ NearbyRobot Safety of the robot, particularly collision with other

robots.
ExtendComms iwE xtendComms ∗

(Beacon || ReverseDrop)
Extend communications as far into the environment as
possible to reduce any delay in reports and minimize
robot travel back and forth.

MaintainComms iwMaintainComms ∗ !Comms Communicate with the base station, either by staying in
or returning to communications.

ReportArtifacts iwReportArt if act s ∗ Art if act Report artifact types and locations to base station.

Photos in which the artifacts suffered excessive motion blur and occlusions, determined by the
ability of the human reviewer to detect the artifact, were removed from the data set. After the AD
pipeline was trained on this initial data collection effort, we found that it did not generalize well to
new environments. Therefore, we augmented the dataset with additional imagery collected from a
greater diversity of backgrounds, including a nearby university loading dock. The dataset was later
augmented with data from areas where false positives were frequently identified in order to reduce
the identification of these false positives.

13.7. BOBCAT Components
BOBCAT calculates Objective weights and Behavior scores to select an Execution Behavior when-
ever one or more Monitor outputs or Objective input weights change. Behavior execution functions
may be either blocking or nonblocking. They should be nonblocking to the maximum extent possible,
to increase reactivity and allow Behaviors to change at any time. Behaviors that need to block may
be required for certain actions that must be completed before the robot can do something different.
If a Behavior is blocking, BOBCAT will delay evaluation until the actions have completed. Tables 8,
9, and 10 provide an exhaustive list of the Monitors, Objective, and Behaviors, respectively.

Field Robotics, January, 2023 · 3:125–189



Flexible supervised autonomy for exploration in subterranean environments · 179

Table 10. MARBLE Behaviors. Evaluation functions calculate the score for each behavior for use by the policy
πB . Components prefixed by “ow” represent the output weight of the objective, while monitor names represent
the binary output of the monitor.
Behavior Evaluation Function Actions
Explore owF indArt if act s ∗ !E x pl oreToGoal +

owInput ∗ iE x pl ore
Request global planner to plan to unexplored
areas.

GoToGoal owF indArt if act s ∗ E x pl oreToGoal +
owInput ∗ iGoToGoal

Request global planner to plan a path to a
specific goalpoint.

Stop owBeSaf e + owInput ∗ iStop Controller stops using plan generated by global
planner. Causes robot to stop autonomous
movement, but will still accept manual
movement by human supervisor.

DeployBeacon owE xtendComms ∗ !ReverseDrop +
owInput ∗ iDepl oyBeacon

Initiate beacon deployment maneuver, which
positions robot, stops, and deploys a beacon.

GoHome owReportArt if act s + owMaintainComms +
owE xtendComms ∗ ReverseDrop +
owInput ∗ iGoHome

Request global planner to plan a path to the
starting point.

Table 11. List of data sets utilized to train the artifact detection system. Also listed is the frames per second
(FPS) of the imagery, the total number of images, the number of labels for each artifact, and the total number
of artifact labels.

Dataset Name FPS Images Labels

Courtyard 10 54523 4837 8299 2682 3190 6219 3928 3654 32809
Edgar Mine 10 3603 254 159 148 142 122 187 84 1096
NIOSH Mine 1 13437 118 45 106 173 0 0 0 442
Satsop Nuclear 15 33953 0 630 0 0 302 0 0 932
Loading Dock 10 6923 184 234 143 143 76 329 116 1225
Total 112439 5393 9367 3079 3648 6719 4444 3854 36504

13.8. Artifact Detection Training Data
Table 11 presents a summary of the training data Team MARBLE collected and annotated. Our
main data collection effort was conducted in the Engineering Center Courtyard at University of
Colorado Boulder, during late evening hours when there was no natural illumination. This location
was chosen because we believed it be more representative of a subterranean environment, with the
large amount of concrete and low illumination levels. Another smaller dataset was collected at the
Edgar Mine in order to introduce data from tunnel-level environments. Real-world imagery from
the Tunnel Event at the NIOSH Mine and the Urban Event at the Satsop Nuclear Power Plant was
incorporated as well. To round out training, a final data set at the loading dock at the Engineering
Center was added.

At the Final Event, our artifact detection system did not correctly detect any vents. It also falsely
detected many white walls as vents. One reason for this poor performance is likely because the vent
we trained on was different than the vent at the Final Event. To support the vent, white sides were
added, making it appear as a box, as shown in Figure 38.

13.9. Competition Results
Table 12 lists the eight teams that competed in the DARPA Subterranean Challenge Final Event,
and the number of artifacts each team found during the 60-minute Prize Run, out of a maximum
possible score of 40.
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Table 12. List of final scores of all teams that participated
in the 60-minute Final Event Prize Run.
Score Team Funding
23 CERBERUS DARPA
23 CSIRO Data61 DARPA
18 MARBLE DARPA
17 Explorer DARPA
13 CoSTAR DARPA
7 CTU-CRAS-NORLAB DARPA
2 Coordinated Robotics Self
2 Robotika Self

Figure 38. Team MARBLE trained on a vent with white-walled sides.

(a) (b) (c) (d)

Figure 39. Robot-robot interactions

13.10. Planning in a Dynamic Environment
The planning algorithm presented in this paper has the capability of adapting to dynamic environ-
ments, i.e., closing or opening of doors, falling rubble, etc. Other situations also lead to dynamic
changes in the map, including other nearly mobile agents, as well as localization and mapping
error. The paper presents the planner response to a trap door and examples of planner responses to
robot-robot encounters as well as localization and mapping error.

Robots often came within close proximity of other robots during the mission. Some examples
of this are shown in Figure 39. Rather than resolve these interactions through the planner, which
operates on a slower timescale that fast-approaching robots, the autonomous mission management
system specifies the higher-priority agent continue while the lower-priority agent wait. The planner
marks previously traversable edges as untraversable, and later updates them as traversable again
once the other agents leaves the vicinity.

Figure 40 presents an instance when the planner on D01 adapted to localization and mapping
drift. The erroneous new map data caused many of the previously traversable edges of the graph
to change to untraversable. The planner adapted to the new scenario, helping the agent return to
the main corridor, at which point a loop closure occurred, correcting the agent’s pose. The planner
operated continuously throughout this localization drift and loop closure correction.
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(a) (b)

(c) (d)

(e) (f)

Figure 40. Instance of D01 experiencing localization drift and erroneous mapping, causing planner to mark
traversable (green) edges in the graph as no longer traversable (red). The progression of events is first (a) no
localization error (13:03), (b) initial localization and mapping error (17:12), (c, d) continued localization and
mapping error (13:53, 17:16), (e) loop closure correcting the robot pose (17:34), teleporting the agent away from
its planned path (pink), and (f) continuing on the mission (18:23).

13.11. Planning in Constrained Spaces
The planner parameters were configured such that the agents would operate safely and not attempt
to traverse highly confined spaces. One limitation to this approach, is that agents could not
autonomously plan and traverse some areas, such as the utility corridor with low ceilings and
narrow cave section, as shown in Figures 41 and 42, respectively. The human supervisor was able to
teleoperate the Spot through the cave section, and it autonomously traversed it when later exiting
the cavern.

13.12. Artifact Reports
All true positive and false positive artifact detections can be seen in Figures 43 and 44 respectively.
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(a) (b)

Figure 41. Mobility limitations.

(a) (b)

Figure 42. Mobility limitations.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 43. All true positive reports of visual artifacts from autonomous artifact detection systems onboard
remote agents D02 [(a) and (b)], D01 [(c)–(g)], H02 (h), and H01 [(i)–(k)], in order from mission start to
mission end.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 44. All false positive reports of visual artifacts from autonomous artifact detection systems onboard
remote agents D02 [(a)–(d)], D01 [(e,)–(h)], H02 (i), and H01 (j), in order from mission start to mission end.

13.13. Twenty-Five Explored Artifacts
This section focuses on all 25 artifacts that Team MARBLE agents were in the vicinity of during
the Final Event Prize Run. To summarize, 18 of these artifacts were scored, one was not scored,
and six were unreported. These three categories of artifacts are discussed in Sections 13.13.1, 13.14,
and 13.15, respectively.

Each artifact has at least one attempt associated with it. The eighteen scored artifacts all end
with a scored attempt (SA), and some will have multiple missed attempts (MA) before reaching a
scored attempt. The one missed artifact was not scored, so it only has missed attempts associated
with it. The six unreported artifacts have no attempts associated with them.

13.13.1. Eighteen Scored Artifacts
L51 Drill (SA1): This drill was the first artifact scored, within 1 minute and 8 seconds of the
mission start. D02 reported and scored the drill as it passed through the first junction of the course,
splitting it into tunnel, urban, and cave corridors (SA1). The human supervisor also saw the drill
via D02 live FPV view and would have attempted to score it had D02 not automatically reported it.

L53 Backpack (SA2): D02 quickly continued into the cave corridor, reporting and scoring the
backpack (SA2). If D02 did not autonomously score the backpack, the human supervisor may have
scored it via D02 live FPV. Had that failed too, H02 and H01 accurately reported the backpack
later in the mission and would have scored it.

L55 Rope (SA3): Because D02 had difficulty traversing the narrow cave corridor, the human
supervisor manually teleoperated the agent through this section of the course, and in the process,
saw the rope via D02 live FPV and reported it (SA3). D02 did not automatically detect the rope,
likely due to poor lighting conditions.
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L26 Survivor (SA4): While D02 immediately explored the cave section, D01 began exploring
the urban section and autonomously reported the survivor and scored it (SA4). Later in the mission,
H01 accurately reported L26 and would have scored had D01 missed it at the beginning of the
mission.

L32 Survivor (SA5): The HS saw the survivor through D02 live FPV stream, submitted a
manual report and scored the artifact (SA5). Later in the mission, accurate autonomous reports
from D01 and H01 would have scored the artifact, had the HS had not already scored it.

L08 Gas (SA6): D01 autonomously reported and scored the gas artifact as it traversed the
urban environment (SA6).

L31 Fire Extinguisher (SA7): During the middle of the mission, the HS teleoperated D01
through a foggy section of the tunnel environment. In this process, the HS saw the fire extinguisher
through D01 live FPV stream, and scored the artifact via manual report (SA7). After this manual
intervention, D01 went onto help score five more artifacts, L34, L38, L36, L40, and L67. The L31 fire
extinguisher was also seen at the end of the mission when the HS was reviewing the D02 archived
FPV images.

L34 Drill (SA8): After the HS teleoperated D01 through the fog, D01 autonomously reported
and scored the drill (SA8). The HS also saw the drill through D01 live FPV stream, and would have
reported the artifact manually had D01 not already scored it.

L38 Fire Extinguisher (SA9): After teleoperating D01 through the fog, the HS saw the fire
extinguisher though D01 live FPV stream and manually scored the artifact (SA9).

L36 Cube (SA10): After the HS teleoperated D01 through the fog, D01 autonomously reported
and scored the cube (SA10).

L40 Backpack (SA11): After the HS teleoperated D01 through the fog, D01 autonomously
reported and scored the backpack (SA11).

L67 Rope (SA12): After the HS teleoperated D01 through the fog, D01 autonomously reported
and scored the rope. The HS also saw the artifact though D01 live FPV stream, and would have
manually reported the artifact had D01 not already scored it (SA12).

L11 Cube (MA5, MA6, SA13): D01 and D02 both autonomously reported the cube, but
were both missed attempts (MA5, MA6), with corresponding errors of 10.73 and 9.42 m. The HS
then used the location of the missed attempts to manually submit an adjusted location, scoring the
cube (SA13) with an error of 1.83 m.

L22 Cell Phone (MA2, MA4, SA14): D01 autonomously reported the cell phone early in
the mission, but was a missed attempt (MA2) with an error of 19.47 m. H02 also autonomously
reported the cell phone, but the report was a missed attempt (MA4) with an error of 7.77 m. Near
the end of the mission, H01 accurately localized the cell phone and scored the artifact (SA14), with
an error of 4.06 m.

L47 Cell Phone (SA15): D02 autonomously reported the cell phone along the subway platform
and scored it (SA15).

L59 Cell Phone (MA1, MA3, MA10, SA16): Located in the left branch of the cave section,
the cell phone was autonomously reported by D02, but was a missed attempt (MA1) with an
error of 13.69 m. The HS then manually submitted the cell phone with an adjusted location, but
this was also a missed attempt (MA3) with an error of 7.74 m. Later in the mission, a third
missed attempt occurred (MA10), as D01 autonomously reported the cell phone with an error
of 9.97 m. Immediately after, the HS used the reported locations from D02 and D01 to submit
another manual report with an adjusted location, and scored the artifact (SA16), with an error of
2.15 m.

L24 Gas (MA11, SA17): The gas was autonomously reported by H01, but with an error
of 5.38 m, resulted in a missed attempt (MA11). Soon after, H02 traversed the same space and
autonomously reported the gas independently of H01. This report better estimated the position of
the artifact, with an error of 2.55 m, and scored (SA17) the gas artifact.

L58 Helmet (SA18): The HS reviewed the D02 archived FPV images near the end of the
mission, and saw the helmet in the cavern. The report was accurate to 1.74 m and scored Team
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MARBLE’S 18th and final point of the mission (SA18). This point was made possible by the HS
teleoperation through the narrow cave corridor.

13.14. One Missed Artifact
L64 Cube (MA7, MA8, MA9): This cube artifact was located atop a steep slope found along the
main corridor of the cave section. D01 autonomously reported the cube but was a missed attempt
with an error of 8.24 m (MA7). Based on that experience, the HS manually submitted two reports
at adjacent locations, both of which were missed attempts (MA8, MA9), with errors of 12.23 m
and 20.15 m. This artifact was never scored during the mission. Figure 45b shows the failed score
attempts circled in red, and the actual position circled in green.

13.15. Six Unreported Artifacts
L02 Vent L02 vent was not detected by the on-board artifact detection system, but was available
in the human supervisor’s FPV feed. At approximately 20 minutes into the mission, D01 (Spot) was
returning home due to a localization error noticed by the human supervisor. While it was returning,
the human supervisor turned attention to other robots, and did not scan the FPV feed for some
time. The robot stopped for 33 seconds and transmitted a series of images similar to Figure 46. Then

(a) (b)

Figure 45. Helmet FPV image transmitted to human supervisor, but missed due to workload (a). L64 Cube
location, circled in green, and incorrect submissions, circled in red (b).

Figure 46. Vent seen by D01 while stopped and transmitted to human supervisor, but missed due to human
supervisor workload.
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Figure 47. Vent detected and reported by D02 late in mission but missed by the human supervisor due to
workload.

the robot moved forward and was stuck on the corner underneath the vent, due to the localization
error, and this is when the Supervisor returned attention to the robot. The FPV images were stored
for later review by the Supervisor, but due to workload, these images were never reviewed during
the mission, and thus the artifact remained unscored.

L05 Vent Approximately 7 minutes prior to the end of the mission, D02 reported a vent and
transmitted the image in Figure 47 to the base station. Unfortunately, due to workload and poor
notification design in the GUI, the human supervisor never noticed the report, and thus it was
not submitted. Although the detection system identified the bucket as a vent, the Supervisor
could easily see the actual vent above it and the reported position was 1.24 m from the actual
position.

L62 Helmet L62 helmet located in the cave section near the tunnel intersection was seen via
FPV, as in Figure 45a but not detected by the robot. This was transmitted by D01 and also available
for review by the human supervisor, but due to workload the images were not reviewed during the
mission.

L13 Gas Approximately 10 minutes prior to the end of the mission, D02 passed approximately
within 1m of this gas artifact, but provided no reports. Further analysis shows the only gas detection
D02 had was a false report in an area with no CO2 nearby. The only other robot to go near this
gas was D01, but it only went near a doorway leading to the area where the gas was located, and
had already reported and scored another gas artifact near that location, so if it did detect L13 it
would have assumed it was the same as the previous artifact.

L21 Vent This vent was in the subway platform area of the environment. Both Spot robots
viewed the vent with various cameras, but never detected it, likely due to the white wall background.
Additionally, communications to the base station were limited in this area, and none of the FPV
images relayed to the human supervisor had the vent in view. Interestingly, D01 did provide a
false report of a vent in this area, and transmitted an image seen in Figure 48, which the human
supervisor discarded as a false report. According to the truth data, the location reported was
3.93 m from the actual vent, and so would have scored if submitted. However, visual analysis
indicates the vent position in the ground truth file appears 2 m off, which would not have
scored.

L42 Fire Extinguisher This fire extinguisher was seen only with the right-facing camera on
D01 for only a few frames, as seen in Figure 49, which was not enough to trigger a detection and
report. The robot was outside of communications, so even if the front camera had seen it, it would
not have been available for the human supervisor.
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Figure 48. False vent reported close to actual vent by D01.

Figure 49. Missed fire extinguisher only seen for a few frames by the right camera of D01.

13.16. Two False Artifacts
This section focuses on two false artifacts that Team MARBLE reported, but were actually the
result of false detections. Each false artifact has at least one false attempt (FA) associated with it.
These false attempts are listed in Table 13.

Gas (FA1, FA2, FA5): Gas was autonomously reported by H02 early in the mission (FA1).
The HS modified the location and manually reported again (FA2), but did not score. Later in the
mission, D02 reported gas again in a very similar location as D01. This increased the confidence in
the HS that gas was in the area, so the HS modified the location of D02 report, but this too did not
score (FA4). It remains unknown why both agents detected elevated levels of CO2, but it is likely
that a source in that vicinity existed, even if it was not an gas artifact.

Fire Extinguisher (FA3): Due to an unknown cause, the human supervisor inadvertantly
submitted the same report twice, which was a fire extinguisher at xyz-coordinates of (20.60, 20.59,
−2.64). Because the fire extinguisher was scored by the last report, this report did not score, but
simply wasted a report.

Backpack (FA4): The image was not clear, but the HS attempted to report it, and it did not
score.

13.17. Tabulated Reports
All reports that Team MARBLE submitted to DARPA are listed in Table 13.
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Table 13. List of all artifact reports submitted by Team MARBLE during the 60-minute Final Event Prize Run.
Bolded entries represent reports that resulted in a score. There are three types of reports: a Scored Attempt (SA),
a Missed Attempt (MA) due to error exceeding 5m, and a False Attempt (FA) due to a false positive detection.
Listed next are artifact ID, artifact type, error, cumulative score, and time since mission start. The scorer is
the agent that submitted the report and scored (or attempted to score), and the assister is the agent(s) that
provided information that aided the scorer in scoring (or attempting to score). The reporting of these artifacts
was completely autonomous, save artifacts scored by the HS as well as those with a (†), denoting artifacts that
were seen as a result of the HS temporarily teleoperating the agent into new areas of the course.

Error Score Time
Report ID Type [m] [mm:ss] Scorer Assister

SA1 L51 0.57 1 01:08 D02
SA2 L53 2.23 2 01:23 D02
SA3 L55 0.84 3 06:23 HS† D02 (live FPV stream)
SA4 L26 0.62 4 12:03 D01
MA1 L59 13.69 14:09 D02
MA2 L22 19.47 14:13 D01
MA3 L59 7.74 14:57 HS D02 (MA1)
SA5 L32 1.40 5 16:35 HS D02 (live FPV stream)
SA6 L08 1.80 6 17:23 D01
FA1 — — 17:33 H02
FA2 — — 17:59 HS H02 (FA1)
MA4 L22 7.77 18:38 H02
MA5 L11 10.73 19:49 D01
SA7 L31 1.31 7 28:08 HS† D01 (live FPV stream)
FA3 — — 33:38 HS
SA8 L34 1.43 8 35:51 D01†

SA9 L38 2.82 9 36:53 HS† D01 (live FPV stream)
SA10 L36 3.94 10 37:08 D01†

SA11 L40 1.40 11 37:58 D01†

SA12 L67 2.87 12 38:47 D01†

FA4 — — 45:18 D02
FA5 — — 46:44 HS H02 (FA1), HS (FA2) & D02
MA6 L11 9.42 47:31 D02
SA13 L11 1.83 13 47:53 HS D01 (MA5), D02 (MA6)
MA7 L64 8.24 48:12 D01
MA8 L64 12.23 48:42 HS D01 (MA7)
MA9 L64 20.15 49:09 HS D01 (MA7) & HS (MA8)
SA14 L22 4.06 14 50:33 H01 D01 (MA2), H02 (MA4), D02
SA15 L47 4.00 15 50:45 D02
MA10 L59 9.07 50:57 D01
SA16 L59 3.15 16 51:48 HS D02 (MA1), HS (MA3), D01 (MA10)
MA11 L24 5.38 52:20 H01
SA17 L24 2.55 17 52:45 H02
SA18 L58 1.74 18 56:33 HS† D02 (archived FPV images)
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Table 14. List of all full-scale field deployments. For the Final Event, Team MARBLE gave greater resources
to system performance validation and human-robot teaming practice. This realized itself as more frequent and
diverse field deployments. For the circuit events, just two to three weeks were spent on field deployments, whereas
for the Final Event, the team devoted two months. Instead of practicing in just one or two environments, the team
was asked to perform in five unique environments. Selecting locations that were “onsite” University of Colorado
Boulder campus enabled the team to be more nimble and operationally efficient. The (*) denotes that the Cave
Event was a self-managed mock event.
Date Deployment Environment Onsite Location
Apr 7, 2019 STIX Event Edgar Experimental Mine Idaho Springs, CO
Jul 29, 2019 Pre-Tunnel 1 Edgar Experimental Mine Idaho Springs, CO
Aug 1, 2019 Pre-Tunnel 2 Edgar Experimental Mine Idaho Springs, CO
Aug 6, 2019 Pre-Tunnel 3 Edgar Experimental Mine Idaho Springs, CO
Aug 9, 2019 Pre-Tunnel 4 Edgar Experimental Mine Idaho Springs, CO
Aug 12, 2019 Pre-Tunnel 5 Edgar Experimental Mine Idaho Springs, CO
Aug 17, 2019 Tunnel Event NIOSH Exp. & Safety Research Mines Pittsburgh, PA
Feb 4, 2020 Pre-Urban 1 Geotech Warehouse Denver, CO
Feb 8, 2020 Pre-Urban 2 Geotech Warehouse Denver, CO
Feb 12, 2020 Pre-Urban 3 Geotech Warehouse Denver, CO
Feb 21, 2020 Urban Event Satsop Nuclear Power Plant Elma, WA
Aug 4, 2020 Pre-Cave 1 Edgar Experimental Mine Idaho Springs, CO
Sep 17, 2020 Pre-Cave 2 Eng. Center (L1) X Boulder, CO
Sep 19, 2020 Pre-Cave 3 Eng. Center (L1) X Boulder, CO
Sep 21, 2020 Cave Event* Edgar Experimental Mine Idaho Springs, CO
Jul 13, 2021 Pre-Final 1 Folsom Parking Garage X Boulder, CO
Jul 14, 2021 Pre-Final 2 Folsom Parking Garage X Boulder, CO
Jul 15, 2021 Pre-Final 3 Edgar Experimental Mine Idaho Springs, CO
Aug 13, 2021 Pre-Final 4 Folsom Parking Garage X Boulder, CO
Aug 17, 2021 Pre-Final 5 Eng. Center (LL & Courtyard) X Boulder, CO
Aug 19, 2021 Pre-Final 6 Sust., Energy, and Env. Community X Boulder, CO
Aug 24, 2021 Pre-Final 7 Eng. Center (LL & Courtyard) X Boulder, CO
Aug 26, 2021 Pre-Final 8 Edgar Experimental Mine Idaho Springs, CO
Sep 1, 2021 Pre-Final 9 Edgar Experimental Mine Idaho Springs, CO
Sep 8, 2021 Pre-Final 10 Eng. Center (LL & Courtyard) X Boulder, CO
Sep 10, 2021 Pre-Final 11 Eng. Center (LL & Courtyard) Boulder, CO
Sep 12, 2021 Pre-Final 12 Eng. Center (L2) + Rustandy X Boulder, CO
Sep 14, 2021 Pre-Final 13 Eng. Center (L2) + Rustandy X Boulder, CO
Sep 21, 2021 Final Event Louisville, Megacavern Louisville, KY

13.18. Field Deployments
Table 14 lists the dates and locations of all full-scale deployments, within the context of the events
at the DARPA SubT Challenge.
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