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Abstract

We introduce a new dataset, SUN-Spot, for localizing
objects using spatial referring expressions (REs). SUN-Spot
is the only RE dataset which uses RGB-D images. It also
contains a greater average number of spatial prepositions
and more cluttered scenes than previous RE datasets. Using
a simple baseline, we show that including a depth channel
in RE models can improve performance on both generation
and comprehension.

1. Introduction
Spatial information can clarify ambiguous instructions

and identify unknown objects. Humans prefer to use spatial
information to differentiate objects even when they could
choose other object descriptions such as color, shape, or
size [22]. Therefore to develop more effective human-
computer interaction, we need models of grounded spatial
language. In this work, we focus on phrases which uniquely
identify objects using spatial information, or spatial referring
expressions (REs).

Spatial REs are challenging to model because they require
understanding additional context. Appearance-based descrip-
tions like color, shape, or object class, require detecting the
attributes of the target object alone. In contrast, spatial
descriptions require understanding the relationship between
the landmark object and the target object. Additionally,
spatial REs are often perspective-dependent.

To address these challenges, we introduce a new dataset,
SUN-Spot, which combines RGB-D images with spatial
REs. Depth is an increasingly ubiquitous sensing modality.
Robots are typically equipped with depth sensors to support
grasping, manipulation, and navigation. Mobile phones and
personal computers are using depth sensing for facial recog-
nition and augmented reality. Depth is also an important
dimension for spatial language with “behind” and “in front”
being among the top prepositions occurring in SUN-Spot.
We hypothesize that including depth in spatial RE models

will improve performance.
SUN-Spot contains 1948 images and 7987 REs, with

an average of 2.6 spatial prepositions per expression. An
example from our dataset is shown in Figure 1. Compared
to existing REs datasets, this dataset has longer descrip-
tions, more spatial prepositions, and is the only dataset
including a depth channel. The full dataset is available at
arpg.colorado.edu/sunspot.

2. Related Work
RE datasets with synthetic images have been used in NLP

for the past decade to study the generation of REs [12]. More
recently, interest in expanding the scope of Visual Question
Answering (VQA) has produced several large scale data
sets, both synthetic, such as CLEVR-Ref+ [15], and realistic,
such as ReferIt [8] and Google RefExp (RefExp) [18]. Other
closely related data sets include visual dialog systems [3, 4],
where the goal is to generate a series of REs which zero in
on one target object, and navigation data sets [1] which use
REs to direct a robot to a goal.

SUN-Spot most resembles the RefExp and ReferIt
datasets. It differs in three important ways: (1) the focus on
spatial relationships between objects, (2) the composition of
the images, and (3) the use of RGB-D images. SUN-Spot
contains the highest mean location prepositions per RE (See
Table 1). Furthermore, SUN-Spot images are keyframes
from a video stream and are therefore more closely resemble
the visual input of a mobile robot. Characteristics of the
keyframes include bad lighting conditions, non-level camera
frames, and a large amount of clutter. In contrast, the
photos used by RefExp and ReferIt are gathered from photo
collections on the web. RefExp and ReferIt image are usually
well lit and have a small number of highly salient objects.
However, the most important difference is that the SUN-Spot
RGB-D images include a depth channel, while RefExp and
ReferIt are RGB only. Depth has been shown to improve
accuracy for scene understanding [16] and manipulation [2].
To our knowledge, our dataset is the only dataset which
combines RE annotations for RGB-D images.
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Figure 1: An example RGB image from the SUN-Spot
dataset including three object bounding boxes with referring
expressions superimposed

3. Data Set

The SUN-Spot dataset extends the scene understanding
dataset SUN RGB-D [21]. SUN RGB-D contains 2D object
segmentation and 3D object bounding boxes with orientation
for over 10,000 RGB-D images of indoor scenes. A subset
of 1449 images, originally the NYUv2 dataset [19], has been
previously annotated with captions [11] and visual questions
[17].

We annotated 1948 images with REs. The images
were selected with a focus on images containing two or
more objects from the same object class, similar to the
methodology of RefExp [18]. The need to discriminate
between objects of the same class within the same scene
forces the annotators to provide more detailed descriptions.
Unlike RefExp, we also include images with only one
instance of the object to achieve a balanced distribution
of the object classes occurring in the SUN RGB-D dataset.
Our image selection process first computed the number of
occurrences of each object class in each image. For each
multiply-occurring object class, we then selected a random
sample of 50 images containing at least 2 objects of that class.
Some classes like “oven” never appear more than once in the
same image. For these classes, we take a random sample of
10 images depicting these classes to avoid excluding object
classes that appear in the SUN RGB-D dataset. For example,
Figure 1 shows two labeled objects from the class “flowers”
and one labeled object from the uncommon class “calendar.”

Table 1 summarizes the size and complexity of the
resulting dataset. It has long descriptions compared to other
RE datasets and a larger average number of spatial preposi-
tions per annotation. The most similar dataset in terms of
expression length and frequency of location prepositions is
RefExp. Figure 2 shows that eight of the ten most frequent
location prepositions are shared by SUN-Spot and RefExp.

Most frequent spatial prepositions in SUNSpot

on to right left in in front of next to side of on top of with 
0

0.05

0.1

0.15

0.2

Most frequent spatial prepositions in RefExp

in with on to right left behind next to at 
0

0.05

0.1

0.15

0.2

P
e

rc
e

n
ta

g
e

 o
f 

to
ta

l 
p

re
p

o
s
it
io

n
s

SUNSpot RefExp

Figure 2: Relative frequency of the 10 most frequent location
prepositions in RefExp and SUN-Spot

To calculate the frequency of location prepositions, we use
a vocabulary of common location prepositions and count
token occurrences in the dataset. Since these prepositions
may have multiple senses, this calculates an upper-bound on
their usage as location prepositions. Several prepositions that
unambiguously refer to location, such as ‘on,’ ‘left,’ ‘right,’
‘front,’ and ‘top,’ occur in greater proportion in SUN-Spot.

4. Experiments

In order to compare the challenges of learning on SUN-
Spot to other RE datasets we run generation and compre-
hension experiments using the same baseline RE generation
network as Mao et al. [18]. Furthermore, to investigate the
value of SUN-Spot’s depth channel, we modify the baseline
slightly to accept depth input and compare to RefExp with
synthetically generated depth.

4.1. Models

Mao et al.’s baseline network consists of two main
components, an image network to encode the image fea-
tures, followed by an LSTM to generate text. Across all
experiments, the LSTM architecture remains the same, and
we substitute two different image models described below.
Furthermore, we modified Mao et al.’s training procedure
and architecture in the following ways to improve training
time and performance. First, we used L2-regularization
on the LSTM weights. We disregarded dropout as we saw
little to no improvement at cost of training time. We also
used the Adam Optimizer [10] to train, where Mao et al.
use vanilla stochastic gradient descent. Our implementation
is available as a Github repository: https://github.
com/crmauceri/ReferringExpressions.

https://github.com/crmauceri/ReferringExpressions
https://github.com/crmauceri/ReferringExpressions


Dataset Images REs Vocab Classes Length LocPrep

SUN-Spot 1,948 7,990 2,690 578 14.04 2.60
ReferIt [8] 19,997 130,364 9,320 276 3.51 0.76
RefCOCO [24] 19,994 142,209 10,341 80 3.50 0.87
Google RefExp [18] 25,799 95,010 2,890 80 8.41 1.23

Table 1: A comparison of RE datasets in terms of the number of images (Images), referring expressions (REs), average location
prepositions per RE (LocPrep), average words per RE (Length), and number of unique object classes (Classes).

RGB Models For direct comparison between the SUN-
Spot and RefExp, we omit SUN-Spot’s depth channel so that
the models can accept both SUN-Spot and RefExp examples
as input. We use a pretrained VGG-16 network [20] to
produce image features.

We trained two RGB RE networks. The first model,
Baseline, was trained for 60 epochs on the RefExp dataset.
For the second model, Baseline+fine, we fine-tuned the
Baseline model with the SUN-Spot training set for a further
30 epochs.

RGB-D Models To test the potential gains from adding
depth based features, we train a custom VGG-16 network
with a 4th channel added to the first convolutional layer of a
conventional VGG-16 network. Because no other RE dataset
contains RGB-D images, we used synthetic depth. Using
MegaDepth [13], we generated a synthetic depth channel for
the COCO dataset [14], the source of images for RefExp. We
train the VGG-16 network for 65 epochs on the portion of
the COCO 2014 training set disjoint from the RefExp dataset.
We use multi-label binary cross entropy loss to predict all
the object labels in each image.

We train two RE models with depth. The first model,
VGG+D, is trained for 30 epochs on the RefExp training
set with the added depth channel. For the second model,
VGG+D+fine, we fine-tune the VGG+D model on SUN-
Spot for a further 5 epochs. For a direct comparison, we
also train an RGB VGG-16 in the same way as the depth
networks, VGG and VGG+fine.

We also experimented with HHA depth preprocessing [5]
which is the standard approach for incorporating depth into
image networks. However, we observed that HHA depth
preprocessing magnified errors in surface normal prediction
in synthetic depth images. Additionally, many of the COCO
images do not have a ground-plane, which is required to
calculate HHA. Therefore we did not find HHA suitable for
synthetic depth.

4.2. Referring Expression Generation

We evaluate our generated expressions with automated
metrics, BLEU, ROUGE-L, and CIDEr [9]. Traditionally
used for measuring the quality of machine translation and
image captioning, they can also be used for comparing the
similarity of two REs. Table 2 shows a summary of the

Model Dataset B1 R-L C P@1
- RefExp 0.33 0.31 0.82
- SUN-Spot 0.56 0.51 1.33
Baseline RefExp 0.30 0.31 0.31 0.50
Baseline SUN-Spot 0.27 0.19 0.07 0.20
Baseline+fine RefExp 0.18 0.21 0.08 0.50
Baseline+fine SUN-Spot 0.45 0.44 0.15 0.33

Table 2: Quantitative results for generation and comprehen-
sion on RGB models. Columns are BLEU1 (B1), ROUGE-
L(R-L), CIDEr(C), and Precision at 1(P@1). The first two
rows compare ground truth REs to establish an upper-bound.
The other rows evaluate generated sentences.

similarity metrics. The first two rows show the datasets’
internal similarity across REs describing the same object. To
calculate this value, we held out one expression from each set
of expressions describing the same object. These scores can
be considered upper bounds on what generated expressions
can achieve as they represent the natural variance between
human annotators. They also show that SUN-Spot has more
internal similarity than RefExp by all three metrics. The
difference in score between datasets confirms that RefExp
and SUN-Spot do have significant biases that stymie transfer
learning from one to the other for generating expressions.
These biases could stem from different vocabulary or from
different sentence structure. It is nevertheless impressive
that the Baseline+Fine shows such improved performance
on SUN-Spot despite the relatively small size of that dataset.

4.3. Referring Expression Comprehension

The models generate REs, but we can also use them to
measure the comprehension of REs by ranking the likelihood
of generating the input expression. Generation likelihood
ranking was introduced simultaneously by Mao et al. [18]
and Hu et al. [6] and has been widely used since to use
generative networks for comprehension [1, 24]. To compute
generation likelihood, for each target RE, S, we select the
bounding box, R∗, which maximizes the probability of
generating the target expression for the given image I . This
can be expressed as

R∗ = argmax
R∈C

p(R|S, I) (1)



Model Dataset B1 R-L C P@1
VGG RefExp 0.17 0.19 0.15 0.25
VGG+D RefExp 0.18 0.20 0.21 0.25
VGG+fine SUN-Spot 0.30 0.35 0.11 0.13
VGG+D+fine SUN-Spot 0.34 0.34 0.14 0.17

Table 3: Results comparing RGB image features (VGG
and VGG+fine) to RGB-D image features (VGG+D and
VGG+D+fine). Metrics are the same as used in Table 2.

where C is the set of all bounding boxes in image I .
In a fully automated scenario, the bounding boxes would

be generated by a bounding box proposal system. To esti-
mate an upper-bound on the performance, we use the ground
truth bounding boxes. As a metric, we use comprehension
precision at 1(P@1), which measures whether the correct
bounding box had the highest generation likelihood for a
given expression. We compare 8 ground truth bounding
boxes per image in the RefExp dataset and 10 bounding
boxes per image in the SUN-Spot dataset. Randomly
selecting a bounding box would yield 12% precision@1
for the RefExp dataset and 10% for the SUN-Spot dataset.

We report the precision for the comprehension task in
Table 2. The precision for the RefExp dataset does not
drop after fine-tuning. This suggests that the SUN-Spot fine-
tuning leads to better generalization for the comprehension
task.

4.4. Effects of Depth

Table 3 compares RGB and RGB-D models. The results
for VGG and VGG+D are similar. The addition of a synthetic
depth channel has a limited effect on performance. However,
between the fine-tuned models, we see a significant improve-
ment in VGG+D+fine, trained with real depth measurements.
Real depth measurements, from SUN-Spot, improve both
generation accuracy and comprehension precision. This is
an interesting result as it underscores the value of RGB-D
datasets in building multi-model RE models.

5. Conclusion

SUN-Spot is a new dataset focused on spatial expressions
describing objects in cluttered interior scenes. It contains
more objects per image, longer descriptions, and more
location prepositions per description than competing RE
datasets. It is the only RE dataset with RGB-D images.
Using depth in multi-modal RE models improves both
generation and comprehension.

Acknowledgments Research sponsored by DARPA
Award: FA8750-18-2-0016. Thank you to Tim O’Gorman
for providing a list of spatial prepositions.

References
[1] A. Balajee Vasudevan, D. Dai, and L. Van Gool. Object

referring in visual scene with spoken language. In WACV,
2018. 1, 3

[2] J. Bohg et al. Data-driven grasp synthesisa survey. IEEE
Transactions on Robotics, 30(2):289–309, April 2014. 1

[3] A. Das et al. Visual Dialog. In CVPR, 2017. 1
[4] H. De Vries et al. GuessWhat?! Visual object discovery

through multi-modal dialogue. In CVPR, 2017. 1
[5] S. Gupta et al. Learning rich features from RGB-D images

for object detection and segmentation. In ECCV, 2014. 3
[6] R. Hu et al. Natural Language Object Retrieval. In CVPR,

2016. 3
[7] A. Janoch et al. A Category-Level 3D Object Dataset:

Putting the Kinect to Work. In Consumer Depth Cameras for
Computer Vision: Research Topics and Applications, pages
141–165. Springer, London, 2013.

[8] S. Kazemzadeh et al. ReferItGame: Referring to Objects in
Photographs of Natural Scenes. In EMNLP, 2014. 1, 3

[9] M. Kilickaya et al. Re-evaluating automatic metrics for image
captioning. In EACL, 2017. 3

[10] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv, 2014. 2

[11] C. Kong et al. What are you talking about? Text-to-Image
Coreference. In CVPR, 2014. 2

[12] E. Krahmer and K. Van Deemter. Computational generation
of referring expressions: A survey. Computational Linguistics,
38(1):173–218, 2012. 1

[13] Z. Li and N. Snavely. MegaDepth: Learning single-view
depth prediction from internet photos. In CVPR, 2018. 3

[14] T.-Y. Lin et al. Microsoft COCO: Common objects in context.
In ECCV, 2014. 3

[15] R. Liu et al. Clevr-ref+: Diagnosing visual reasoning with
referring expressions. In CVPR, 2019. 1

[16] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015. 1

[17] M. Malinowski, M. Rohrbach, and M. Fritz. Ask Your
Neurons: A Deep Learning Approach to Visual Question
Answering. In International Journal of Computer Vision,
volume 125, pages 110–135, 2017. 2

[18] J. Mao et al. Generation and Comprehension of Unambiguous
Object Descriptions. In CVPR, 2016. 1, 2, 3

[19] N. Silberman et al. Indoor segmentation and support inference
from RGB-D images. In ECCV, 2012. 2

[20] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv, 2014. 3

[21] S. Song et al. SUN RGB-D: A RGB-D Scene Understanding
Benchmark Suite. In CVPR, 2015. 2

[22] H. Viethen. The Generation of Natural Descriptions: Corpus-
based Investigations of Referring Expressions in Visual
Domains. Australasian Digital Theses Program. Macquarie
University, 2011. 1

[23] J. Xiao, A. Owens, and A. Torralba. SUN3D: A Database of
Big Spaces Reconstructed using SfM and Object Labels. In
CVPR, 2013.

[24] L. Yu et al. Modeling context in referring expressions. In
ECCV, 2016. 3


