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Abstract— We present an approach for estimating the body-
frame velocity of a mobile robot. We combine measurements
from a millimeter-wave radar-on-a-chip sensor and an inertial
measurement unit (IMU) in a batch optimization over a sliding
window of recent measurements. The sensor suite employed
is lightweight, low-power, and is invariant to ambient lighting
conditions. This makes the proposed approach an attractive
solution for platforms with limitations around payload and
longevity, such as aerial vehicles conducting autonomous explo-
ration in perceptually degraded operating conditions, including
subterranean environments. We compare our radar-inertial
velocity estimates to those from a visual-inertial (VI) approach.
We show the accuracy of our method is comparable to VI in
conditions favorable to VI, and far exceeds the accuracy of VI
when conditions deteriorate.

I. INTRODUCTION

Accurate and reliable estimates of ego-velocity are crucial
for closed-loop control of autonomous mobile robots during
navigation operations. This is especially true for fast-moving
robots like micro aerial vehicles (MAVs). Robot body-frame
velocities are commonly estimated using some combination
of visual, LiDAR, inertial and/or GPS sensors. Accurate ego-
velocity estimates are intrinsic to any number of simultane-
ous localization and mapping (SLAM) methods that have
been developed. For those methods that rely on visual data,
the quality of the ego-velocity estimate is quickly degraded
in darkness, feature-poor environments, and so forth. Here,
we consider the subterranean environment as a motivating
example.

Robust autonomy in subterranean environments is cur-
rently a popular research topic. NASA is planning to explore
caverns on the moon and Mars [1], while DARPA is conduct-
ing its Subterreanen Challenge1. Most state-of-the-art meth-
ods for body-frame velocity estimation are significantly im-
paired in conditions common to subterranean environments,
e.g. GPS data is unavailable and cameras cannot capture
useful information in complete darkness. Thermal imaging
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Fig. 1. Experimental sensor rig consisting of 77–81 GHz FMCW radar,
Intel RealSense T265 tracking camera, LORD microstrain IMU and Intel
NUC onboard computer.

is a popular option for robots operating in darkness, smoke
or fog [2], but these methods track temperature gradients,
which are often not present in subterranean environments.
Thus, it is clear that there exists a need for a reliable and
efficient method for ego-velocity estimation which is capable
of generalizing across diverse environments and operating
conditions.

Millimeter wave radar is an attractive option for subter-
ranean environments. It does not require light or temperature
gradients to operate. Additionally, automotive-grade system-
on-chip (SoC) radars have low power requirements. How-
ever, radar measurements are adversely affected by sensor
noise and radar-specific corruptions of data, e.g. multipath
reflections and binning of spatial and Doppler measurements.
So, while it is certainly possible to estimate a robot’s body-
frame velocity from standalone radar data using robust
optimization techniques [3], these estimates are not suffi-
ciently accurate for reliable control. Additionally, the antenna
pattern of the radar will naturally provide more accuracy
in some dimensions than others. In order to overcome the
shortcomings of radar as a standalone sensor, it is beneficial
to fuse radar and inertial measurements.

This work presents a method for ego-velocity estimation
that uses an automotive-grade radar SoC (Texas Instruments
AWR1843) and a MEMS IMU. We use Doppler velocity
measurements to estimate the body-frame velocity of the
sensor at the time of each radar measurement. We jointly esti-
mate ego-velocities over a sliding window of the previous K
radar measurements in a nonlinear optimization framework,
using IMU measurements to constrain the change in velocity
between radar measurements. The addition of inertial data



Fig. 2. Example of the subterranean analog environment in which we
tested: the steam tunnels beneath Folsom Field at CU Boulder.

helps to smooth the high noise that would be present if we
were estimating body-frame velocity from radar data alone.
Conversely, velocity estimates from the radar are drift-free,
so the radar information allows us to estimate the biases of
the IMU.

This paper is organized as follows. Section II reviews
related work in the area of ego-velocity estimation. Sec-
tion III details our velocity estimation method. Section
III-A briefly describes how Doppler velocity and inertial
constraints are combined to accurately estimate the sensor
platform’s body-frame velocity. Section III-B describes how
body-frame velocity can be estimated from millimeter wave
radar data and how the Doppler residual is formulated in our
optimization. Section III-C explains the IMU kinematics used
in our problem and how the inertial constraint is formulated.
We then highlight the process for experimentally validating
our method in Section IV. Finally, we discuss our results and
conclusions in Sections V and VI, respectively.

II. RELATED WORK

While radar is well-established in the automotive industry
and has been used for various tasks in vehicle autonomy
including collision avoidance, automated braking, lane keep-
ing, autonomous parking, etc. [4], very few methodologies
for using radar as a primary sensor for ego-motion estimation
have been presented in the literature. The most consequen-
tial of these have focused on odometry and SLAM using
only millimeter wave radar. [5] presents methods for radar
landmark detection, scan matching, and odometry in diverse
and challenging conditions; this work is extended in [6].
Additionally [7] and [8] have presented methods for radar-
based SLAM using arrays of automotive-grade radar sensors.
Lastly, [9] made use of Doppler velocity measurements for
body-frame velocity estimation as part of their odometry
system.

Additionally, good results for ego-velocity estimation have
been obtained using stereo camera configurations and RGB-
D sensor systems [10], [11], [12]. The use of a smart camera
(optical flow), an IMU and a range sensor is proposed in [13]
and [14]. Similarly, methods like [15] take advantage of a
LiDAR or a combination of LiDAR and IMU measurements
as in [16]. Although these approaches are able to efficiently

Fig. 3. Factor graph representation of the radar-inertial velocity estimation
system. States from N previous timesteps are jointly estimated using
Doppler targets and sets of IMU measurements as constraints

estimate ego-velocity, they are ill-equipped for use in envi-
ronments with challenging sensing conditions.

Like our method, several previous state estimation systems
have been formulated as maximum a posteriori estimation
problems represented by factor graphs [17]. These include
the popular visual method ORB-SLAM [18], [19] and the
visual-inertial method OKVIS [20] from which our radar-
inertial method draws considerable inspiration.

Our method represents a significant advance over previous
methods in several important ways. First, our method is ap-
plicable to 3 dimensional environments, while the previously
mentioned radar state estimation methods are only applicable
to 2D environments. This means that our method is usable
on micro aerial vehicles and other robots that do not operate
in planar environments. Second, our method fuses radar and
inertial measurements, providing highly accurate estimates
and constraining the large uncertainty normally associated
with radar-based methods. Previous radar state estimation
methods have used radar as their sole sensor and robotic
sensor fusion methods with radar have only been minimally
explored. Lastly, previous radar-based state estimation meth-
ods have either depended on highly specialized scanning
sensors [5], [6], [9] or arrays of several automotive sensors
requiring precise extrinsic calibration [7], [8]. Our method
requires only one single-board radar sensor and an IMU, and
thus the sensor package we employ is simpler than those used
in previous methods.

III. METHODOLOGY

A. System Structure

Our approach estimates the body-frame velocity of the
sensor platform over a sliding window [21] of K previous
radar measurements. These velocities are linked by integrated
accelerometer measurements from the IMU. Figure 3 shows
a factor-graph representation of our system’s structure.

Accelerometer measurements are affected by both bias ba
and gravity gW . Velocity estimates from radar are bias free,
so we can compensate for the accelerometer biases by simply
including them in the state vector. Compensating for gravity
is more complicated, however. To do this we need to estimate
the IMU’s attitude (pitch and roll), which we represent as the
orientation quaternion qWS . In order to estimate the IMU’s
attitude, we need to use gyro measurements and to do this we
must also estimate the gyro biases bg . The full state vector
is then given as x = [vTS ,q

T
WS ,b

T
g ,b

T
a ]T .

We formulate our radar-inertial ego-velocity estimation as
an optimization over the cost function



J(x) :=

K∑
k=1

∑
d∈Dk

edwd︸ ︷︷ ︸
Doppler term

+

K−1∑
k=1

eks
T
W k
s eks︸ ︷︷ ︸

inertial term

(1)

where K is the number of past radar measurements for which
states are estimated, Dk is the set of targets returned from
the radar measurement at time k, ed is the Doppler velocity
error, es is the IMU error. The error terms are weighted by
the information matrix Ws in the case of the IMU errors; and
the normalized intensity of the corresponding radar target

wjd =
ij∑
d∈D id

(2)

in the case of the Doppler velocity measurements where wjd
is the weight for target j in scan D and ij is the intensity of
target j. In the following sections we detail the formulation
of our Doppler and IMU measurement constraints.

B. Estimating Ego-Velocity From Doppler Velocity Measure-
ments

A radar measurement consists of a set of targets D. Each
d ∈ D consists of [rS , vR, θS , φS ]T , the range, Doppler
(radial) velocity, azimuth, and elevation for target d. The
Doppler velocity measurement vR is equal to the magnitude
of the projection of the relative velocity vector between the
target and sensor vS onto the ray between sensor origin and
the target rS . This is simply the dot product of the target’s
velocity in the sensor frame and the unit vector directed from
the sensor to the target

vR = vS

(
rS
‖rS‖

)T
(3)

We assume the targets in the scene are stationary and only
the sensor platform is moving. In this case each radar target
can provide a constraint on our estimate of the sensor rig’s
velocity in the body-frame. The velocity error for each radar
target is then

ek(xk,di,k) = vi,kR − vkS

(
ri,kS
‖ri,kS ‖

)T
(4)

where xk is the state at time k and di,k is the ith target in the
set of radar measurements at time k. As previously noted,
radar measurements are affected by non-Gaussian noise and
radar scans often contain false target data. These challenges
are addressed by using the Cauchy robust norm with the
Doppler residual.

C. Formulation of the IMU Constraint

1) IMU Kinematics: In our system, the IMU’s accelerom-
eter readings are used to measure the system’s change in
body-frame velocity between radar measurements. Our IMU
model is very similar to those used in OKVIS [20] and
MSCKF [22], except we do not use the IMU to measure
the change in the system’s full pose, only its velocity

and attitude. The states are propagated via the following
differential equations:

q̇WS =
1

2
Ω(ωS)qWS

v̇S = aS + CSWgW − (ωS)× vS

ḃg = wbg

ḃa = −1

τ
ba + wba

(5)

The elements of w := [wT
g ,w

T
a ,w

T
bg
,wT

ba
]T are zero-

mean, uncorrelated Gaussian white noise, gW is the gravity
vector in the world frame, and CSW is the rotation matrix
specifying the rotation from the world frame of reference to
the sensor frame. The gyro and accelerometer measurements,
ω̃S and ãS respectively, are defined as the true acceleration
and angular rate with added bias and white noise

ω̃S = ωS + bg + wbg

ãS = aS + ba + wba

(6)

and the matrix Ω is formed from the estimated angular rate
as

Ω(ωS) :=

[
−ωS

1

]⊕
(7)

The ⊕ operator is defined in [23].
In order to optimize over this model we need the lin-

earized, discrete time version of the state equations in Eq.
(5). First, the continuous time state transition matrix is

Fc(x) =


03×3 03×3 C̄WS 03×3

−C̄WS [gW ]× −[ωS ]× −[vS ]× −I3×3
03×3 03×3 03×3 03×3
03×3 03×3 03×3 − 1

τ I3×3


(8)

where the [.]× operator denotes the skew symmetric matrix
associated with the cross product of the vector. Next, an
approximate discretization of Fc is found via Euler’s method

Fd(x,∆t) = I + Fc(x)∆t (9)

and the covariance is propagated as

Pk+1 =

Fd(x̂
k,∆t)PkFd(x̂

k,∆t)T + G(x̂k)QG(x̂k)T
(10)

where Q := diag(σ2
g , σ

2
a, σ

2
bg
, σ2
ba

) and

G(x) =


C̄WS 03×3 03×3 03×3
03×3 I3×3 03×3 03×3
03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3

 (11)



Fig. 4. Different rates of IMU and radar sensor. One IMU term uses all
accelerometer and gyro readings between successive radar measurements.
Additionally, gyro and accelerometer readings at times 0 and R are
interpolated from the adjacent measurements.

2) IMU Error: The IMU provides measurements at many
times the rate of the radar sensor. Further complicating mat-
ters, the IMU and radar measurements are not synchronized.
This is illustrated in Fig. 4.

Between radar measurements at timesteps k and k + 1
several IMU measurements occur. We interpolate between
the IMU measurements immediately before and after the
radar measurements to obtain estimated IMU readings that
align temporally with the radar measurements. The state
at k + 1, x̂k+1, is estimated by iteratively applying the
propagation equations in Eq. (5) using the Euler forward
method. The IMU error is then defined as

ek(xk,xk+1, zk) =


2
[
q̂k+1
WS ⊗ qk+1

WS

−1]
1:3

v̂k+1
S − vk+1

S

b̂g − bg
b̂a − ba

 (12)

where the ⊗ operator is as defined in [23]. The Jacobian of
the error with respect to the state at k + 1 is defined as

∂ek

∂χ̂k+1
=

[q̂k+1
WS ⊗ qk+1

WS

−1]⊕
1:3,1:3

03×9

09×3 I9×9

 (13)

The Jacobian with respect to the state at time k is somewhat
more difficult to calculate because the IMU error term is
found by iteratively applying the IMU integration. Differen-
tiating the error with respect to the state at time k requires
use of the chain rule, leading to

∂ek

∂χ̂k
=

(
R∏
i=0

Fd(x̂
i,∆ti)

)
∂ek

∂x̂k+1
(14)

IV. EXPERIMENTS

A. Sensor Setup

To demonstrate our method we use an automotive grade
radar-on-chip sensor, Texas Instruments AWR1853. The sen-
sor operates in the 77-81 GHz band and identifies targets
within a field-of-view (FOV) of approximately ± 75 degrees
azimuth and ± 20 degrees elevation. The sensor produces a
maximum of 160 targets per measurement at a rate of 10 Hz.
For inertial sensing we employ a LORD Microstrain 3DM-
GX5-15 IMU. The extrinsic transform between the IMU and
radar coordinate frames was manually measured.

Fig. 5. Data collection in the Mars yard at the NASA Jet Propulsion
Laboratory.

To estimate groundtruth body-frame velocity of the sensor
rig, we use measurements from a Vicon motion capture sys-
tem and an IMU onboard the vehicle platforms. The Vicon
system provides drift-free pose measurements. However, the
transform between the Vicon system’s coordinate frame and
the vehicle’s coordinate frame is unknown. Additionally, the
Vicon measurements are subject to both noise and communi-
cation latency between the Vicon system and the host system.
Thus, IMU measurements are used to estimate the transform
between the Vicon coordinate frame and the vehicle’s body-
frame, the timestamp offsets between the Vicon system and
host system, and to smooth noise in the Vicon measurements,
similar to [24].

B. Evaluation Procedure

To evaluate our method, we create a new dataset of radar
and inertial data using the sensors previously described. In
addition to radar and inertial data, we record Vicon data
when available for groundtruth. Lastly, for comparison we
use the visual inertial odometry (VIO) output from an Intel
Realsense T265.

We conducted experiments using the handheld sensor rig
shown in Fig. 1. Several of these were done in the steam
tunnels beneath Folsom Field at CU Boulder to simulate a
subterranean environment, and outdoors in the Mars yard at
NASA’s Jet Propulsion Laboratory. These environments are
pictured in Fig. 2 and Fig. 5, respectively. These runs do
not include groundtruth data so the performance of the two
methods is compared qualitatively. Here we seek to demon-
strate that when VIO works our radar-inertial method’s
performance is comparable to VIO and when VIO fails our
method continues to work.

The steam tunnel runs are between 60 and 120 seconds
in length and are conducted in bright and dark conditions.
The Mars yard runs were roughly 60 seconds in length.
These were done with the sensor rig close to the ground,
as would be the case for a planetary rover. Also, the Mars
yard experiments were conducted near sunset. This created
challenging lighting conditions for VIO with large brightness
gradients, shadows, and a very bright sky near the horizon
which would make it difficult to obtain properly exposed
images.



TABLE I
CONDITIONS IN WHICH EXPERIMENTS WERE RUN. EACH LISTED

EXPERIMENT WAS RUN THREE TIMES.

Location Motion Lighting Platform Groundtruth

CU Vicon Space Fast Bright Quadrotor Vicon
CU Vicon Space Slow Bright Quadrotor Vicon
CU Vicon Space Fast Dim Quadrotor Vicon
CU Vicon Space Fast Dark Quadrotor Vicon
CU Steam Tunnels Slow Bright Handheld None
CU Steam Tunnels Slow Dark Handheld None
JPL Mars Yard Slow Bright Handheld None

TABLE II
MEAN AND STD DEVIATION OF RMS VELOCITY ERROR IN M/S FOR

QUADROTOR EXPERIMENTS (N = 3)

Lighting bright bright dim dark
Movement slow fast fast fast

µ σ µ σ µ σ µ σ

VIO
x .10 .025 .20 .021 .20 .030 .56 .012
y .26 .012 .19 .014 .23 .021 .31 .018
z .17 .021 .31 .030 .31 .009 .40 .013

RI
x .10 .011 .21 .006 .19 .016 .16 .013
y .16 .015 .28 .009 .25 .017 .17 .020
z .11 .025 .28 .006 .25 .024 .14 .017

The same sensor suite was also mounted on a quadrotor
for experiments in our motion capture space. These quadrotor
runs varied between 30 and 60 seconds in length, featured
both slow, smooth motions and fast, aggressive motions, and
were conducted in bright, dim, and dark conditions. Each of
these experiments was run 3 times in the same conditions
and over the same path. All of these runs have groundtruth
from motion capture. For these runs, we are able to quantify
the accuracy of VIO and our radar-inertial method in terms
of the root mean squared error (RMSE) between the ego-
velocity estimate and the groundtruth:

vRMSE =

√∑N
i=1(viest − vigt)

2

N
(15)

The runs included in our dataset are summarized below in
table I.

V. RESULTS

Table II lists the mean and standard deviation of the RMSE
in estimated ego-velocity from radar-inertial (RI) and VIO
along all body-frame axes for our quadrotor experiments.
From these results, it is clear the accuracy of RI is compa-
rable to VIO when the scene is brightly or moderately lit.
However, in dark conditions VIO’s performance deteriorates
considerably while RI’s accuracy is unaffected.

For the included plots, VIO estimates are plotted in
red, RI in blue, and groundtruth in green. Figure 6 shows
the error of velocity estimates from RI and VIO for the
quadrotor experiment for which VIO performed best. Fig. 6
shows that even when conditions are optimal for VIO, RI’s
accuracy is comparable to VIO. However, if the input radar
measurements to our RI system are persistently incorrect
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Fig. 6. Body-frame velocity estimate error from our method and VIO for
an example run in ideal sensing conditions for VIO. Errors for VIO are
plotted in blue and ours are plotted in red.

for multiple seconds then the IMU constraints will not be
sufficient to smooth out the noise in the radar measurements.
This can be seen around the 10 second mark in the vy error
plot of figure 6. This issue may be addressed in future work
by adding a term to the optimization that approximates the
influence of measurements that have passed out of the sliding
window.

Figure 7 shows the estimated ego-velocity components
for an example run conducted in dark conditions in our
motion capture space. The velocity estimates from RI track
the groundtruth closely, while the estimates from VIO often
have large deviations. This demonstrates that the proposed
method continues to function normally in dark conditions
while VIO’s performance suffers. Additionally, Fig. 8 shows
the ego-velocity estimates from RI and VIO taken with our
handheld rig in the subterranean environment in dark condi-
tions. RI consistently produces results in the dark conditions,
while VIO cuts out completely for about 10 seconds at
the 20 second mark. Groundtruth is not available for this
experiment, so it is not possible to say which method is
more accurate, but Fig. 8 shows that RI continues functioning
where VIO fails completely. This behavior was typical of all
runs in this experiment.

Figure 9 shows the estimated ego-velocity components for
an experiment in the JPL Mars yard. In this experiment, the
sensor rig is moved steadily forward in the x direction with
small movements in the y and z directions. Subjectively,
radar-inertial velocity estimates reflect the platform’s true
motion, while VIO is noisy and has difficulty tracking in



0 20 40 60 80
−4

−2

0

2

4

time (s)

v x
(m

/s
)

0 20 40 60 80
−4

−2

0

2

4

time (s)

v y
(m

/s
)

0 20 40 60 80
−4

−2

0

2

4

time (s)

v z
(m

/s
)

Fig. 7. Estimated and groundtruth velocity components for a run with the
quadrotor rig in a motion capture space in dark conditions. VIO estimates
are plotted in red, radar-inertial in blue, and groundtruth in green.

the x and z directions. This demonstrates how RI performs
well outdoors in conditions that present difficulties for VIO.
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Fig. 8. Estimated body-frame velocity components from RI and VIO
taken with the handheld rig in the subterranean test environment in dark
conditions. VIO estimates are plotted in red and radar inertial estimates are
plotted in blue. Note RI steadily produces estimates throughout the run,
while VIO drops out between 20 and 30 seconds.
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Fig. 9. Plots of the body-frame velocity components estimated by VIO
and RI in the Mars yard at the JPL. VIO estimates are plotted in red and
RI’s estimates are plotted in blue. In this run the sensor rig moved steadily
forward in the x direction, with small movements in the y and z directions.

VI. CONCLUSIONS

This work presents a method for estimating the 3D body-
frame velocity of a radar-inertial sensor platform. We fuse
Doppler velocity measurements from an SoC millimeter
wave radar sensor with inertial measurements from an IMU.
Radar is invariant to the kinds of perceptually challeng-
ing conditions that present problems for vision-based ego-
velocity estimation methods. Radar-based methods will fail
when a sufficient number of strong radar reflectors are not
present in the environment; however, this work demonstrates
that even in open outdoor environments such as JPL’s Mars
Yard a sufficient number of radar targets are detected for
the proposed method to be successful. Additionally, the
radar-inertial sensor suite is lightweight and has low power
requirements making it an attractive alternative for platforms
with constraints on their payload and power.

The accuracy of the presented approach is shown through
indoor, outdoor and subterranean experiments via compar-
isons with a motion capture system (indoors) and a com-
mercial VIO system. The resulting experiments demonstrate
that the proposed method is comparable to the VIO approach
for ego-velocity estimation in conditions favorable to VIO
methods, and far exceeds VIO accuracy when conditions
deteriorate.
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