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Abstract— Sparse feature-based maps provide a compact rep-
resentation of the environment that admit efficient algorithms,
for example simultaneous localization and mapping. These
representations typically assume a static world and therefore
contain static map features. However, since the world contains
dynamic elements, determining when map features no longer
correspond to the environment is essential for long-term utility.
This work develops a feature-based model of the environment
which evolves over time through feature persistence. Moreover,
we augment the state-of-the-art sparse mapping model with a
correlative structure that captures spatio-temporal properties,
e.g. that nearby features frequently have similar persistence. We
show that such relationships, typically addressed through an ad
hoc formalism focusing only on feature repeatability, are crucial
to evaluate through a probabilistically principled approach.
The joint posterior over feature persistence can be computed
efficiently and used to improve online data association decisions
for localization. The proposed algorithms are validated in
numerical simulation and using publicly available data sets.

I. INTRODUCTION

In the context of mobile robots and autonomous driving,

accurate high resolution spatial awareness is necessary for

successfully navigating an environment. This can be cast

as a data fusion problem in which noisy measurements

from sensors undergoing uncertain dynamic motions must

be combined into a single underlying state estimate. This

problem is typically addressed through a procedure known

as Simultaneous Localization and Mapping (SLAM). Some

applications, such as autonomous driving, require high fi-

delity state estimates which need to be robust to sensor and

environmental changes. Current SLAM algorithms can be

fragile in two aspects: algorithmic foundations and hardware

robustness. The former includes failure modes induced by

limitations in current SLAM algorithms (i.e. difficulty han-

dling dynamic environments); the latter includes failures due

to sensor degradation. We focus on one of these algorithmic

limitations: the reliance on static maps. In general, one

cannot make simplifying assumptions such as the existence

of a static world on arbitrary real-world environments; stop

signs are removed, buildings change appearance, and road

construction is pervasive. Explicitly addressing this failure

mode is critical for safe long-term operation.

It is impossible to talk about algorithmic failures without

mentioning data association. Data association matches each

measurement to the portion of the state the measurement
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Fig. 1: Localizing against a stale map: the green trajectory shows the
estimated poses from range/bearing and odometry measurements, given
a prior map which is no longer current (circles represent incorrect map
elements).

refers to (e.g. associating a visual feature to a specific land-

mark in visual SLAM). Incorrect associations can quickly

cause the SLAM estimate to diverge [1]. This is especially

critical in feature-based maps which lack a notion of appear-

ance (i.e visual or structural descriptor).

In the static-world case, perceptual aliasing makes data

association a challenging problem; this problem is worsened

by the presence of unmodeled dynamics in the environment,

which include both short-term and seasonal changes. It is

fairly common for current SLAM approaches to make a static
world assumption, which holds true for independent, short

mapping runs in small-scale environments. However, when

mapping in large environments over long periods of time,

change is inevitable.

Change in the environment can be especially difficult to

detect when dealing with an increased amount of clutter or

when the change is subtle. For example, lane markings may

be re-painted a few centimeters from the original position due

to construction, or traffic signs may be slightly re-located.

These scenarios are especially susceptible to incorrect data

associations resulting in localization error. We present a

robust solution to detecting changes in feature-based maps

which leverages information about both single features and

neighboring features to produce a globally consistent belief

over individual and joint feature persistence. Figure 1 shows

an example of robust localization against a stale map: the
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Fig. 2: Graphical example of the problem: in the left figure, the measurements are correctly associated to map features; in the middle figure, some landmarks
have moved, for example lane markings that were re-painted (blue stars), and the map is outdated (white stars). Here, one measurement (green cross)
is correctly identified as a new measurement, while the other is incorrectly associated to the outdated map feature due to landmark clutter, pose and
measurement uncertainties. In the right figure, the incorrect data association causes the least-squares solution to converge to an incorrect estimate. Our
proposed solution leverages the correlation between the three landmarks which moved to estimate the joint feature persistence and improve data associations.

localization estimate remains consistent even though some

elements of the map have moved.

We extend the work in [2], which introduced the notion

of a Bayesian filter to model feature persistence in a time-

varying feature-based environmental model. We differ from

[2] by proposing a general formulation for persistence which

takes into account correlation between features. We focus on

sparse feature based maps with no assumptions on sensor-

specific feature descriptors (i.e visual descriptors) which is

broadly applicable to any sparse feature-based representation.

We are interested in estimating the existence of each feature

in the map and bounding the localization error due to

incorrect data associations, we show that by capturing the

underlying structure of the environment we are able to make

better informed decisions on data associations. In summary,

we propose a novel joint probabilistic formulation over

feature persistence. We show that a joint formulation over

feature persistence can be made informative by imposing

or learning the structure of the environment. We further

show that the joint and marginal persistence estimates are

amenable to constant-time operation. Finally, we demonstrate

that by incorporating the joint belief over feature persistence

in the data-association step, we are able to perform robust

localization even in the presence of hard-to-detect changes

(e.g. small changes). We demonstrate the benefits of estimat-

ing map persistence in a graph-SLAM [3], [4] implementa-

tion, potentially enabling long-term autonomous applications

which are robust to arbitrarily small map changes.

II. PRIOR WORK

The challenge of dealing with dynamic and semi-static

environments is a recurring problem in the robotics com-

munity and has been addressed from multiple fronts. The

principal challenges with semi-static environments are the

need to detect a change in the environment and update
an existing map so that it reflects the most current state

of the world. One way to tackle this problem is to use

environmental representations that are suited for dynamic

environments. One such representation is the seminal work

by Biber and Duckett [5], [6] who update a sparse map

built from 2D laser scans by randomly selecting a fixed

fraction of the scans every revisit to update the prior map.

Morris et al. presents a multiple-map approach [7] where

many map instances are stored and the one best fitting the

current set of sensor measurements is used, an approach

suitable for environments with a discrete set of possible

configurations. Other approaches [8] model each “place”

as a set of experiences which has proven to be robust to

drastic seasonal changes. The main difference between these

methods and what we propose is that while one targets

localization we are interested in producing a geometrically

and temporally consistent representation of the environment

suitable for continued localization.

Other approaches [9], [10], [11] are capable of recovering

a geometrically-consistent map robust to dynamic environ-

ments. However these solutions are tailored to specific sensor

modalities, such as the work in [11] which models places as

a collection of camera images, connected by 6-DOF trans-

formations between camera poses. Another example is [9],

which proposes the Dynamic Pose Graph SLAM but limits its

use to 2D laser scanners and lacks an underlying probabilistic

model for reasoning about change while abstracting the

sensor modalities.

The Occupancy Grid is also a common choice for envi-

ronmental representation, as proposed by Meyer-Delius et al.

[12]. This work uses a dynamic occupancy grid which adapts

the classic occupancy grids [13] to dynamic environments by

modeling each cell as a stationary two-state Markov process.

Other works such as [14] also propose a form of dynamic

occupancy grids; [15] incorporated the occupancy grid model

into a particle filtering framework for a Bayesian model-

based mapping solution. These methods have in common

the restriction of representing the environment by its vol-

umetric geometry, which limits their accuracy in cases of

interest such as when using visual appearance information

for mapping.

Recently there has been some work on semi-static feature-

abstracted environments such as Krajnk et al. [16] with
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Fourier analysis for predicting future states but that is de-

signed for periodic activity. The work most similar to this

paper was presented by Rosen et al. [2] which proposes

an information-theoretic formulation for feature persistence

taking into account sensor errors. However, this approach

ignores potential correlations between feature persistence by

assuming each feature persistence is marginally independent.

This is not validated with any real data; furthermore, the

impact of the persistence model on improving the map and

data associations is not addressed. In contrast to these prior

works, we present a general unified formulation for feature

persistence that captures potential correlation between fea-

tures, while maintaining a tractable posterior for constant-

time estimation and showing the necessity of modeling

feature persistence jointly for robust localization.

III. METHODOLOGY

We cast feature persistence estimation within the context

of probabilistic SLAM. The quantities of interest that are

directly useful for higher-level tasks are the robot’s pose in

time and the positions of the map features; these quantities

will be represented by the state vector X = [xp,xl1:M
] where

xp are all the poses and xl are the M map features. Given

a set of sensor measurements Z , the Maximum-a-Posteriori

(MAP) SLAM problem is to maximize the posterior p(X|Z).
However this problem as stated is intractable since it requires

summing over all possible data associations, an intractably

large problem due to its combinatorial nature [17]. Letting

J be the vector of all data association hypothesis one might

then wish to estimate the optimal data association vector

argmaxJ p(J |Z); however the difficulty in evaluating the

likelihood of a spurious measurement (i.e. the likelihood

of seeing a new feature) makes this approach undesirable.

The usual solution is to solve for data associations with a

search over possible associations, using techniques such as

Joint Compatibility Branch and Bound (JCBB) [1] and then

condition the state estimate on data associations: p(X|Z, J)
where J is the vector of data associations that assign a feature

in the state vector to a measurement. If we drop the static-

world assumption and allow features to have an associated

“survival time,” an additional set of discrete random variables

Θt ∈ {0, 1} which represent if a feature exists at a specified

time t. An appealing approach would be to jointly estimate

data associations and feature persistence p(J,Θ|Z), however

we run into the same problem of evaluating the likelihood

of a spurious measurement. Therefore we take a similar

approach to estimating the state vector X and condition the

feature persistence on the output of the data association step

p(Θt|J). This is done by first estimating J using a data

association technique such as JCBB, which is then used to

estimate Θ.

A. Feature Persistence Model

We follow the survivability formulation introduced in [2],

which we will briefly describe here. Each feature i in the map

has a latent “survival-time” Ti ∈ [0,∞) which represents the

time when feature i ceases to exist, as well as a persistence

variable Θt
i:

Ti ∼ pTi(·)

Θt
i|Ti =

{
1, t ≤ Ti

0, t > Ti

, (1)

where Θt
i is a boolean random variable representing whether

feature i exists at time t, and pTi
(·) encodes some prior

distribution over the survival time Ti. We are interested

in estimating for each feature i, its marginal persistence

probability p(Θt
i = 1|J1:N ), where J1:N are all the feature

detections collected until time tN . Note that for a map with

M features J1:N = {J1:N
1 , ..., J1:N

M } with J1:N
k � {jtik }Ni=1,

k ∈ [1,M ], j ∈ [0, 1]. The feature detections are the

output of the data-association step, indicating if feature k
was detected at time ti.

B. Estimating Feature Persistence

We are interested in estimating the full joint feature persis-

tence posterior at a certain time t, given all data association

decisions from time t1 to tN :

p(Θt = 1|J1:N ), (2)

where Θt is the joint persistence over all M map features

Θt � {Θt
1, ...,Θ

t
M} at time t ∈ [tN ,∞). This implies that

we are interested in estimating the joint posterior probability

over feature existence in the present and future, given the

sequence of detections for all features. It is important to note

that we only estimate the persistence probability for times

equal to or greater than the last received measurement tN .

Noting that p(Θt = 1|J1:N ) = p(T ≥ t|J1:N ), with T �
{Ti}Mi=1 the vector of survival times for all M map features

and using Bayes’ Rule to compute the posterior probability

in (2)

p(Θt = 1|J1:N ) =
p(J1:N |T ≥ t)p(T ≥ t)

p(J1:N )
. (3)

We will now derive a closed-form expression for eval-

uating each of the joint posterior terms, starting with the

joint detection likelihood P (J1:N |T ≥ t). We make the

assumption that a sequence of detections J1:N of feature

i depend only on the feature i itself; that is, p(J1:N
i |T ≥

t) = p(J1:N
i |Ti ≥ t)

p(J1:N |T ≥ t) =

M∏
i=1

p(J1:N
i |Ti ≥ t)

=

m∏
i=1

n∏
k=1

p(jtki |Ti ≥ t), (4)

where we are also making the assumption that the se-

quence of detections {jt1i , jt2i , . . . , jtNi } for feature i is

conditionally independent from other detections, given the

persistence Θt
i. The intuition behind this is that given ex-

istence of a feature, its sequence of detections should not

depend on other features. We are still left with evaluating

the individual measurement likelihood P (jti |Ti) which is the
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Fig. 3: p(Ti) (solid black line) is the independent prior on the survival time
Ti modeled as an exponential decaying function. Given some correlated
feature k with Tk ≥ 50 we model p(T |Tk ≥ 50) (dotted blue line) with
weights πi = 0.75πk = 0.25, which re-enforces our prior belief over Ti

if Ti ≥ 50

probability of detecting a feature given its survival time Ti.

If data-associations were always perfect this would simply

be 1 if Ti ≥ t and 0 if Ti < t. Since that is not the case,

we follow the formulation in [2] and define a probability
of missed detections PM and probability of false alarm PF .

Using the model defined in (1)

p(jti |Ti) =

{
P

(1−jti )
M (1− PM )j

t
i , Ti ≥ t

P
jti
F (1− PF )

(1−jti ), Ti < t
, (5)

where PM models the probability that the feature exists but

was not detected, and PF the probability that the feature no

longer exists but was detected, which may happen due to

incorrect data associations or spurious measurements. These

quantities are dependent on a series of factors such as the

amount of clutter in the environment, the data-association

process, and therefore the state uncertainty. We present

PM and PF as constants, but they could be modified per

observation, e.g., to include occlusions.

The core contribution of this work is in the modeling and

evaluation of p(Θt), the joint prior distribution over feature

persistence (at time t). In the trivial case each feature is

independent and p(Θt) =
∏M

i=1 p(Θ
t
i) however we cannot

realistically make that independence assumption. In many

environments the existence of one feature is clearly corre-

lated to the existence of other features and exploiting that

correlation is a crucial aspect estimating jointly consistent

persistence. However, tracking the full joint distribution

P (Θt) over all features is intractable as it grows 2M with

M map features. However, if we impose some structure to

the environment (e.g. a feature drawn from a curb in the

road is not affected if a sign-post is removed, however it

is strongly correlated to other features in the same curb)

the complexity of computing the joint prior is bounded by

the maximum number of correlated features. Such structure

is justified based on the intuition that the existence of a

feature is only strongly correlated to a subset of the map.

The formulation proposed in [2] makes the assumption that

the persistence for each feature is marginally independent,

which is a specific instance which falls out of the general

formulation in (3). We propose exploiting the underlying

structure of the environment to leverage the correlation

between features while still maintaining a tractable posterior.

Imposing some structure on the feature map such that there

exists a set of L ≤ M cliques {τi}Li=1, with τ ti ⊂ Θt and

features z ∈ τ , the joint posterior factors into

p(Θt) ≈
L∏

i=1

p(τ ti ). (6)

Given the assumption that features associated in a clique

τi have strongly correlated persistence, the joint prior p(τ ti )
can be approximately decomposed into:

p(τ ti ) ≈
∏
z∈τ

p(θtz|θtk) =
∏
z∈τ

p(Tz|Tk ≥ t) ∀k ∈ τ, (7)

which states that for any feature k in a clique τi, the joint dis-

tribution p(τi) can be approximately factored into a product

of conditional distributions on feature zk ∈ τi. The intuition

behind this approximation is that for a set of correlated

features (e.g a set of features all drawn from the same

rigid body), conditioning on a single feature from that rigid

body adds approximately the same amount of information

as conditioning on all the features. The conditional prior

p(Tz|Tk ≥ t) is defined as

p(Tz|Tk ≥ t) �
{
πzp(Tz < ti) ti < t

πzp(Tz ≥ ti) + πk ti ≥ t
, (8)

with
∑

j πj � 1 pairwise weights associated to each feature

pair in τi.

Having computed the likelihood and the prior from (3),

we are left with computing the marginal measurement prob-

ability or evidence P (J1:N ). We leverage the fact that the

detection likelihood is constant in the intervals between

detections and the factorization of the full joint posterior into

L cliques. Combined with a way to evaluate the cumulative

distribution function of the survival time prior p(T ≤ t) �
FT (t), where FT (t) is the c.d.f. of the survival time prior as

described in [2] to derive a closed-form expression for the

evidence; defining t0 � 0 and tN+1 �∞

p(J1:N ) =

L∏
i=1

p(J1:N
τi )

=
L∏

i=1

(∏
z∈τi

(
N∑

u=0

p(J1:N
z |tu)

∫ tu+1

tu

p(Tτi)

))
,

(9)

where we first decomposed the full joint evidence into the

product of the cliques τi, then further decomposed each

clique into the product of its individual terms, which are

tied together by the joint prior P (Tτi). We make use of (7)

to write out the integral over joint prior survival times as

a product of conditional distributions on one element of the

clique p(Tτi) =
∏

z∈τ p(Tz|Tk) where each conditional prior

can be evaluated according to (8).
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Fig. 4: Terms which need to be computed for the marginal evidence with two
features [T1, T2]. The segments represented by arrows are the the possibility
that each feature’s survival time T is within that range. Each ti represents
the time in which a new detection was received. Computing the joint evi-
dence requires summing over the detection likelihood for all measurements
given every configuration of T1, T2. When a new measurement is received
(dotted vertical line) at time t4 we only need to recompute terms associated
with the segments highlighted in red.

1) Marginal Formulation: Suppose we wish to estimate

the marginal persistence for a feature a which is correlated

to another feature b, given a sequence of N detections

J1:N
a , J1:N

b from time t ∈ [t1, tN ]. We may make the

reduction:

p(Θt
a =1|J1:N

a , J1:N
b ) =

p(Ta ≥ t|J1:N
a , J1:N

b )

=

∫ ∞

0

p(Ta ≥ t, Tb|J1:N
a , J1:N

b ) dTb

=

∫ ∞

0

p(J1:N
a , J1:N

b |Ta ≥ t, Tb) · p(Ta ≥ t, Tb)

p(J1:N
a , J1:N

b )
dTb

=
p(J1:N

a |tN )p(Ta ≥ t)

p(J1:N
a , J1:N

b )
×∫ ∞

0

p(J1:N
b |Tb)p(Tb|Ta ≥ t) dTb, (10)

where we use the fact that p(J1:N |T ) is constant in the

intervals [ti, ti+1] to define the integral in (10) as∫ ∞

0

p(J1:N
b |Tb)p(Tb|Ta ≥ t) dTb

=

N∑
i=0

p(J1:N
b |ti)

∫ ti+1

ti

p(Tb|Ta ≥ t) dTb. (11)

Note that in the case where features a and b are inde-

pendent, p(Tb|Ta ≥ t) = p(Tb) and (11) simply becomes

the marginal p(J1:N
b ) which cancels part of the evidence in

(10); this results in exactly the posterior defined in [2].

C. Feature Correlation Design

In this section we describe how to design the weights π
in (8). Since there is no inherent structure to the sparse

feature-based environmental representation, we design a

prior structure that aims to capture the underlying structure

of the environment. It is possible to learn feature correlations

from the sensor data used to create the feature map (i.e

image frames or point clouds) using a object detector to

semantically segment the environment. However the original

sensor data used to create the map is not always readily

available. We deal with that scenario, where the only input

to designing feature correlation is the sparse feature map

itself.

We model features which where observed at a similar

point in time, and are physically close to have correlated

persistence. The intuition is that if a set of features is co-

observed and geometrically close, the likelihood that they

belong to the same semantic object (e.g. lane markings,

sign post) is high. We define the set N of all features that

were observed within Δs, and within that set we employ

a Euclidean nearest neighbors metric to group features in

cliques of up to n = 5 features, which are within a maximum

distance dmax to the center of the clique. When applied to

sparse feature-based maps in which clutter is reduced this

method is a general way of capturing the underlying scene

structure. The weights π between features are then computed

as the inverse Euclidean distance

πij =
1∥∥X̂i − X̂j

∥∥ , (12)

where πij is the normalized weight such that
∑

j πij = 1.

Computing the set of cliques and their corresponding weights

can be performed offline. Figure 3 demonstrates the effect

the weights π have on the prior distribution p(Ti); The

conditional distribution p(Ti|Tj > t) with given weights πij

is a mixture model with reduced probability mass before t.
In the case of independent features πii = 1 and Figure 3

becomes the solid line.

D. Recursive Estimation

Computing the full posterior in (3) every time a new

observation is included is computationally expensive, in this

section we show how to compute both the joint distribution

P (Θt|J1:N ) and the marginal P (Θt
i|J1:N ) as described in

Section III-B.1 in a recursive manner by re-using previously

computed terms. This allows for a constant-time update when

a new detection is received. When a new observation jtN+1

is appended to the observation vector J1:N , tN+1 > tN and

given the independence assumption in (4), the updated joint

likelihood is

p(J1:N+1|T ≥ t) =

M∏
i=1

N+1∏
k=1

p(jtki |Ti ≥ t). (13)

So the updated joint likelihood at time tN+1 can be written

in terms of the previous at time tN

p(J1:N+1|T ≥ t) = p(J1:N |T ≥ t)

M∏
i=1

p(jN+1
i |Ti ≥ t).

(14)
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Updating the joint evidence is less straightforward due to

having to integrate over all possible survival times for all

features. However using the decomposition of the joint prior

distribution in (7) where we have L cliques τi, when a

new measurement at tN+1 is observed, we can compute the

updated joint evidence as

p(J1:N+1) =

L∏
i=1

p(J1:N+1
τi ). (15)

If a clique τk has τM features the clique evidence p(J1:N
τk

)
can be computed as

p(J1:N
τk

) =

N−1∑
i=0

p(J1:N
τk
|ti)p(ti−1 ≤ Tτk < ti)

+ p(J1:N
τi |Tτi ≥ tN ), (16)

which implies that the updated partial evidence, which

excludes the last term in the sum (where the survival time is

TN+1 after incorporating the measurement at time tN+1 is

pL(J
1:N+1
τk

) �
[(

N−1∑
i=0

p(J1:N
τk
|ti)p(ti−1 ≤ Tτk < ti)

)

+
(
p(J1:N

τk
|tN )p(tN ≤ Tτk < tN+1)

) ]

×
τM∏
i=1

p(jN+1
i |Ti < tN+1). (17)

The full updated evidence can be obtained by combining the

partial evidence from (17) with the measurement probability

given feature survival times at time T = tN+1

p(J
1:N+1
τk

) = pL(J
1:N+1
τk

) +

τM∏
i=1

p(jN+1
i |Ti ≥ tN+1) (18)

The updated joint distribution can thus be computed for

each clique τi using Eqs. (13), (15) and computing the

prior using (7). Figure 4 shows the terms that need to be

updated every time a new measurement is incorporated. In

summary, we use the fact that the measurement likelihoods

are constant between observations (e.g. between ti and ti+1)

to discretize the integral over survival times T , and that

when a new measurement is incorporated at time tN+1

the terms corresponding to survival times before tN can

simply be updated my multiplying by the probability of

seeing measurement jN+1 given that the survival time for

that feature is before tN+1 (segments in blue in Figure 4).

The marginal persistence probability can be updated in an

analogous manner and is omitted due to space constraints.

IV. ROBUST DATA ASSOCIATIONS AND LOCALIZATION

In this section we briefly present a common data associ-

ation technique and show how our work estimating feature

persistence can disambiguate the data association problem

in the presence of semi-static scene elements. The maximum
likelihood (ML) or individual compatibility solution to data

association is based on probabilistic methods and can be

summarized as taking into account the uncertainties between

the robot’s location and the landmark position in the map.

It can be interpreted as a simple nearest neighbors data

association, but with Euclidean distance replaced by the Ma-

halanobis distance. The standard approach is to model each

measurement z ∼ N (h(X ),Γ) as a Gaussian distribution

with given covariance Γ. Taking the negative logarithm we

obtain the maximum likelihood cost function

D2 := ||h(X̂ )− z||2Λ, (19)

where D is the Mahalanobis distance and the covariance Λ
is defined as

Λ :=
∂h

∂X Σ
∂h

∂X
T

+ Γ, (20)

with Σ the current state uncertainty. The hypothesis that

a given measurement z was caused by the jth landmark

can be evaluated based on a chi-square acceptance decision

D < χ2
d,α where α is the desired confidence level and d

the dimension of the measurement. Instead of considering

every map feature as a candidate for data association, we

use the marginal persistence estimate for each feature to

weight the data associations. We are specifically interested

in avoiding incorrect data associations when there are mul-

tiple hypothesis with similar cost; in the scenario where

we consider feature persistence independently and the pose

uncertainty is non-negligible, it is impossible to distinguish

between two hypothesis: associate the measurement to a

map feature or consider it a new feature, given that the

static world assumption no longer holds. However given

some environmental structure, the joint persistence estimate

can capture the difference, as shown in Figure 5. The only

assumption is that at some point at least one feature in a

clique of correlated features was independently determined

to have low persistence. For example, if a sequence of

consecutive and co-linear lane markings are represented by

point features and have correlated joint prior distribution over

persistence, and those lane markings have shifted slightly the

assumption is that at some point the pose uncertainty over the

vehicle location is small enough that we are able to determine

that at least a single feature in that group no longer exists;

then even if the pose uncertainty grows and we are not able

to individually determine that every feature in the group no

longer exists, the joint persistence model allows us to infer

the non-existence of the other lane markings, an example of

this is shown in Figure 2.

V. EXPERIMENTS AND RESULTS

Our evaluation of the proposed joint persistence formu-

lation has two principal objectives: establish the improved
persistence estimate by modeling correlation between fea-
tures and how can we use the persistence for each feature to

perform robust data associations and successfully navigate

challenging dynamic environments. To that extent we use

both simulated and real datasets with ground truth infor-

mation to assess persistence and localization error. Due to

the lack of a dataset with naturally occurring changes of a

semi-static nature, we impose changes on the environment to
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Fig. 5: Comparison of independent filter and joint filter for a single point
feature. With no changes to the environment (t ∈ [0, 540]) the filters are
equivalent. At time 540 the feature is moved by 1m in the x direction, due
to increased pose uncertainty the measurements from the moved feature are
associated to the old map point, and the independent filter (dashed line)
renews its belief over the feature’s existence. The joint filter indicates a
drop in belief due to the correlation to neighboring features which have
been identified as removed.

varying degrees. In order to assess the usefulness of estimat-

ing feature persistence in a factor-graph SLAM setting, we

implement a 2D SLAM system in which odometry and range

and bearing measurements are added to a keyframe-based

fixed-lag smoothing [18] back-end which uses ceres-solver

[19] to solve the non-linear least squares problem.

Initially the map is created with known data associa-

tions, since landmark initialization is not the focus of this

work. Once the map of 2D point features has been created,

Mahalanobis-distance data association as described in Sec-

tion IV is used to chose a pairing between each range and

bearing measurement and point feature in the map, using

the covariance from the latest state estimate X̂ which can

be efficiently recovered from the square-root information

form using [20] and the covariance from the estimated

map feature. This setup allows for realistic modeling of the

feature detector (i.e data associations) in terms of the pose

uncertainty, clutter in the environment and the type of change

the landmark underwent (removed vs. moved).

A. Simulation

We generate a 2D map with N features drawn uni-

formly from a predefined set of environments (road, random

landmarks, hallway) and simulate a robot traveling along

a pre-determined path. Wheel odometry measurements are

generated at 50Hz, composed of forward velocity (m/s) and

steering angle (rad). The measurements are corrupted by

zero-mean Gaussian noise with standard deviation of 0.1m/s

and 0.09 rad (∼ 10◦). Range and bearing measurements are

generated for every landmark in the robot’s field of view

(90◦, 10m) and corrupted by zero-mean Gaussian noise of

0.05m and 0.08 rad respectively. Visible landmark measure-

ments are removed with probability PM sampled uniformly

PM ∼ U([0.01, 0.3]) and spurious range and bearing mea-

surements are sampled uniformly from the robot’s field of

view with probability PF ∼ U([0.01, 0.15]). For each τi
clique of features in the map we sample a survival time

T ∼ [0, 1000], since we make the assumption that features

in the same clique have correlated persistence. If we define a
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Fig. 6: Precision and recall for feature removal with removal threshold set
to Pd = 0.5 over 200 observations of a single feature which was moved by
Δi as described in Section V-A for a total duration T = 1000. The feature
is moved by Δi ∈ {0.1, 0.3, 0.5, 1, 1.5, 2, 3} meters. The persistence used
for determining if a feature should be removed or not is computed using
the marginal persistence p(Ti > t|J1:N ) where J1:N are all the detections
for every feature in the map.

persistence threshold Pd = 0.5 in which features are removed

from the map the performance of the removal classifier in

terms of the amount of change Δi each feature undergoes can

be assessed in terms of feature removal precision and recall.

In a map with 50 features in which a single feature is changed

by varying amounts we average 200 observation sequences

for that feature. Figure 6 shows the average removal precision

and recall for both the individual persistence filter as in

[2] and this work. The recall for the individual filter is

considerably worse than the joint filter for small changes

in the feature, as expected since given the uncertainties in

the measurements the data association step will associate

the measurement from the moved landmark to the stale map

feature, thus renewing its belief and flagging the feature for

removal.

B. Real Data

In order to validate the proposed method on real data we

use the UTIAS [21] dataset which has ground truth poses

sampled at 100Hz with accuracy in the order of 1e−3m.

This dataset is composed of a 2D sparse point-feature based

map with ground-truth data associations provided. Since

there are no semi-static landmarks in the dataset, we impose

change in the landmarks in a similar manner as described

in Section V-A. We wish to assess the robustness of the

proposed method to various environmental configurations,

in terms of the pose RMSE. Figure 7 shows three datasets

in which feature cliques were created based on co-linearity

of features. The cliques were then moved by increments

of 0.01m and a batch estimate was computed for each

increment. A feature removal threshold of Pd = 0.6 was

used for data associations. Figure 7d shows the evolution of

the RMSE for each dataset vs. the clique translation. The

RMSE increases with very small ([0, 0.15]m) translations

since all features in the clique are still detected and the

incorrect map features are still included in the optimization.

The error reducing when at least one feature in the clique

is determined to be below the removal threshold Pd. It is

interesting to note that the detection, and subsequent update

to persistence for each feature is entirely dependent on the

data association, which in turn is a function of the structure of

the environment (i.e. clutter, number of features) and the pose
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Fig. 7: Evaluation of robust localization in the presence of small changes to
landmarks in different configurations. Three scenarios from the UTIAS [21]
dataset were used to assess the robustness of the proposed method to small
changes. Individual features (black) do not have correlated persistence to
any other features. Each scenario has two cliques (red and magenta) which
have correlated persistence. In each of the three environments the features
in a clique were moved in the x direction between [0, 2]m in increments of
0.01m. (a) - (c) represent the average estimated trajectory position over all
change configurations, (d) shows the RMSE for each scenario vs. feature
translation.

and feature uncertainty at the moment of data association,

regardless of the data association scheme used (e.g. JCBB,

IC). The three datasets in Figure 7 show a drop in RMSE

at a similar change point (∼ 0.4m) indicating a realistic

minimum feature change for any kind of persistence aided

localization to be effective.

VI. CONCLUSION

We present an general formulation for feature persistence

which makes use of correlation between feature persistence

imposed by a joint prior distribution which may be learned

or engineered. The key insight of this work is proposing a

joint distribution over feature persistence which is computa-

tionally tractable in constant time. Our proposed formulation

improves upon prior work on modeling individual feature

persistence by demonstrating the necessity of a joint model

when the environment is subject to change. Our approach

allows for the use of the survival time prior distributions

discussed in [2] while incorporating information about envi-

ronmental structure. We show approximated constant-time

online inference over feature persistence in a graph-slam

environment in both simulated and real scenarios, subject to

landmark change. The use of persistence for informed data

associations allows navigating through challenging dynamic

environments where considering the joint feature persistence

is essential.
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